• Title/Summary/Keyword: Learning and Memory

Search Result 1,259, Processing Time 0.029 seconds

Analysis on Evaluating Learner's Attention States in a Virtual Environment and Retained Memory after VR Learning (가상현실 학습자의 주의집중상태와 학습 후 기억내용에 관한 영향분석)

  • Park, Kyoung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1835-1844
    • /
    • 2007
  • Recently there have been some positive evidences on the effects of learning in a virtual environment. However, most of these educational VR systems were not deeply considered in the design of drawing a learner's attention on lesson contents, which would help enhance retained memory. Hence, a study was conducted to measure 17 subjects' attention states using EEC, ECG, GSR, and eye-tracking and their behaviors while they were given guided search task or exploration task in a virtual environment consisting of five major events. It also analyzed the subject's remembered items after their VR experiences using a surrey. This paper Int describes an overview of the ocean virtual environment used in this study, and it then explains the experimental design, apparatus, and method. It will also discuss the results by a detail analysis (in a whole VR session as well as event-related 10-second 33 sub-sessions) with the subjects' attention states and their retained memory after the learning.

Effect of Red Ginseng on Radiation-induced Learning and Memory Impairment in Mouse (방사선 조사 마우스에서 학습기억 장애에 대한 홍삼의 효과)

  • Lee, Hae-June;Kim, Joong-Sun;Moon, Chang-Jong;Kim, Jong-Choon;Jo, Sung-Kee;Jang, Jong-Sik;Kim, Sung-Ho
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.132-138
    • /
    • 2009
  • Previous studies suggest that even low-dose irradiation can lead to progressive cognitive decline and memory deficits, which implicates, in part, hippocampal dysfunction in both humans and experimental animals. In this study, whether red ginseng (RG) could attenuate memory impairment was investigated through a passive-avoidance and object recognition memory test, as well as the suppression of hippocampal neurogenesis, using the TUNEL assay and immunohistochemical detection with markers of neurogenesis (Ki-67 and doublecortin (DCX)) in adult mice treated with a relatively low-dose exposure to gamma radiation (0.5 or 2.0 Gy). RG was administered intraperitonially at a dosage of 50 mg/kg of body weight, at 36 and 12 h pre-irradiation and at 30 minutes post-irradiation, or orally at a dosage of 250 mg! kg of body weight/day for seven days before autopsy. In the passive-avoidance and object recognition memory test, the mice that were trained for one day after acute irradiation (2 Gy) showed significant memory deficits compared with the sham controls. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 12 h after irradiation. In addition, the number of Ki-67- and DCX-positive cells was significantly decreased. RG treatment prior to irradiation attenuated the memory defect and blocked apoptotic death as well as a decrease in the Ki-67- and DCX-positive cells. RG may attenuate memory defect in a relatively low-dose exposure to radiation in adult mice, possibly by inhibiting the detrimental effect of irradiation on hippocampal neurogenesis.

Improvement of Classification Accuracy of Different Finger Movements Using Surface Electromyography Based on Long Short-Term Memory (LSTM을 이용한 표면 근전도 분석을 통한 서로 다른 손가락 움직임 분류 정확도 향상)

  • Shin, Jaeyoung;Kim, Seong-Uk;Lee, Yun-Sung;Lee, Hyung-Tak;Hwang, Han-Jeong
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.242-249
    • /
    • 2019
  • Forearm electromyography (EMG) generated by wrist movements has been widely used to develop an electrical prosthetic hand, but EMG generated by finger movements has been rarely used even though 20% of amputees lose fingers. The goal of this study is to improve the classification performance of different finger movements using a deep learning algorithm, and thereby contributing to the development of a high-performance finger-based prosthetic hand. Ten participants took part in this study, and they performed seven different finger movements forty times each (thumb, index, middle, ring, little, fist and rest) during which EMG was measured from the back of the right hand using four bipolar electrodes. We extracted mean absolute value (MAV), root mean square (RMS), and mean (MEAN) from the measured EMGs for each trial as features, and a 5x5-fold cross-validation was performed to estimate the classification performance of seven different finger movements. A long short-term memory (LSTM) model was used as a classifier, and linear discriminant analysis (LDA) that is a widely used classifier in previous studies was also used for comparison. The best performance of the LSTM model (sensitivity: 91.46 ± 6.72%; specificity: 91.27 ± 4.18%; accuracy: 91.26 ± 4.09%) significantly outperformed that of LDA (sensitivity: 84.55 ± 9.61%; specificity: 84.02 ± 6.00%; accuracy: 84.00 ± 5.87%). Our result demonstrates the feasibility of a deep learning algorithm (LSTM) to improve the performance of classifying different finger movements using EMG.

Meta Learning based Global Relation Extraction trained by Traditional Korean data (전통 문화 데이터를 이용한 메타 러닝 기반 전역 관계 추출)

  • Kim, Kuekyeng;Kim, Gyeongmin;Jo, Jaechoon;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.23-28
    • /
    • 2018
  • Recent approaches to Relation Extraction methods mostly tend to be limited to mention level relation extractions. These types of methods, while featuring high performances, can only extract relations limited to a single sentence or so. The inability to extract these kinds of data is a terrible amount of information loss. To tackle this problem this paper presents an Augmented External Memory Neural Network model to enable Global Relation Extraction. the proposed model's Global relation extraction is done by first gathering and analyzing the mention level relation extraction by the Augmented External Memory. Additionally the proposed model shows high level of performances in korean due to the fact it can take the often omitted subjects and objectives into consideration.

The Relationship between Neurocognitive Functioning and Emotional Recognition in Chronic Schizophrenic Patients (만성 정신분열병 환자들의 인지 기능과 정서 인식 능력의 관련성)

  • Hwang, Hye-Li;Hwang, Tae-Yeon;Lee, Woo-Kyung;Han, Eun-Sun
    • Korean Journal of Biological Psychiatry
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2004
  • Objective:The present study examined the association between basic neurocognitive functions and emotional recognition in chronic schizophrenia. Furthermore, to Investigate cognitive variable related to emotion recognition in Schizophrenia. Methods:Forty eight patients from the Yongin Psychiatric Rehabilitation Center were evaluated for neurocognitive function, and Emotional Recognition Test which has four subscales finding emotional clue, discriminating emotions, understanding emotional context and emotional capacity. Measures of neurocognitive functioning were selected based on hypothesized relationships to perception of emotion. These measures included:1) Letter Number Sequencing Test, a measure of working memory;2) Word Fluency and Block Design, a measure of executive function;3) Hopkins Verbal Learning Test-Korean version, a measure of verbal memory;4) Digit Span, a measure of immediate memory;5) Span of Apprehension Task, a measure of early visual processing, visual scanning;6) Continuous Performance Test, a measure of sustained attention functioning. Correlation analyses between specific neurocognitive measures and emotional recognition test were made. To examine the degree to which neurocognitive performance predicting emotional recognition, hierarchical regression analyses were also made. Results:Working memory, and verbal memory were closely related with emotional discrimination. Working memory, Span of Apprehension and Digit Span were closely related with contextual recognition. Among cognitive measures, Span of Apprehension, Working memory, Digit Span were most important variables in predicting emotional capacity. Conclusion:These results are relevant considering that emotional information processing depends, in part, on the abilities to scan the context and to use immediate working memory. These results indicated that mul- tifaceted cognitive training program added with Emotional Recognition Task(Cognitive Behavioral Rehabilitation Therapy added with Emotional Management Program) are promising.

  • PDF

The Effect of Docosahexaenoic Acid on Brain Function and Acetylcholine Level in Cerebral Cortex of Electroconvulsive Shock Induced Mice (Docosahexaenoic acid가 전기충격성 뇌장애 마우스의 기억력 및 Acetylcholine량 변화에 미치는 영향)

  • 김문정;신정희;윤재순
    • YAKHAK HOEJI
    • /
    • v.39 no.3
    • /
    • pp.231-242
    • /
    • 1995
  • Electroconvulsive shock (ECS) increases the activity of acetylchohnesterase and decreases in brain acetylcholine levels. A large amount of free fatty acids accumulated in the brain tissue affects cerebral blood flow, brain edema and inflammation and results in brain injury. The present study examined the effect of docosahexaenoic acid (DHA) and D,L-pyroglutamic acid (D,L-PCA) on the learning and memory deficit using the passive avoidance failure technique and on the change of acetylcholine and choline level in the cerebral cortex of ECS-induced mice. The application of ECS (25mA, 0.5sec) induced a significant decrease in memory function for 30 min. ECS-induced a significant decrease in cortical acetylcholine and choline levels 1 min following the ECS application, which were almost recovered to ECS control level after 30 min. DHA (20 mg/kg, i.p.). administered 24 hr before shock. prevented the ECS-induced passive avoidance failure and the decrease of acetylcholine level 1 min following the ECS application. DHA failed to elicit a change in cortical choline level. DHA did not affect memory function and the cortical Ach and choline level of normal mice. The administration of D,L-PCA (500 mg/kg, i.p.) increased the effect of DHA on memory function and the change of cortical acetylcholine level of ECS induced mice. These results suggest that DHA treatment may be contributed to the prevention against memory deficit, and to the activation of cholinergic system in the ECS induced mice.

  • PDF

Administration of Phytoceramide Enhances Memory and Up-regulates the Expression of pCREB and BDNF in Hippocampus of Mice

  • Lee, Yeonju;Kim, Jieun;Jang, Soyong;Oh, Seikwan
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.229-233
    • /
    • 2013
  • This study was aimed at investigating the possible effects of phytoceramide (Pcer) on learning and memory and their underlying mechanisms. Phytoceramide was orally administered to ICR mice for 7 days. Memory performances were assessed using the passive avoidance test and Y-maze task. The expressions of phosphorylated cAMP response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF) were measured with immunoblot. The incorporation of 5-bromo-2-deoxyuridine (BrdU) in hippocampal regions was investigated by using immunohistochemical methods. Treatment of Pcer enhanced cognitive performances in the passive avoidance test and Y-maze task. Immunoblotting studies revealed that the phosphorylated CREB and BDNF were significantly increased on hippocampus in the Pcer-treated mice. Immunohistochemical studies showed that the number of immunopositive cells to BrdU was significantly increased in the hippocampal dentate gyrus regions after Pcer-treatment for 7 days. These results suggest that Pcer contribute to enhancing memory and BDNF expression and it could be secondary to the elevation of neurogenesis.

Comparison of scopolamine-induced cognitive impairment responses in three different ICR stocks

  • Yoon, Woo Bin;Choi, Hyeon Jun;Kim, Ji Eun;Park, Ji Won;Kang, Mi Ju;Bae, Su Ji;Lee, Young Ju;Choi, You Sang;Kim, Kil Soo;Jung, Young-Suk;Cho, Joon-Yong;Hwang, Dae Youn;Song, Hyun Keun
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.317-328
    • /
    • 2018
  • Cognitive impairment responses are important research topics in the study of degenerative brain diseases as well as in understanding of human mental activities. To compare response to scopolamine (SPL)-induced cognitive impairment, we measured altered parameters for learning and memory ability, inflammatory response, oxidative stress, cholinergic dysfunction and neuronal cell damages, in Korl:ICR stock and two commercial breeder stocks (A:ICR and B:ICR) after relevant SPL exposure. In the water maze test, Korl:ICR showed no significant difference in SPL-induced learning and memory impairment compared to the two different ICRs, although escape latency was increased after SPL exposure. Although behavioral assessment using the manual avoidance test revealed reduced latency in all ICR mice after SPL treatment as compared to Vehicle, no differences were observed between the three ICR stocks. To determine cholinergic dysfunction induction by SPL exposure, activity of acetylcholinesterase (AChE) assessed in the three ICR stocks revealed no difference of acetylcholinesterase activity. Furthermore, low levels of superoxide dismutase (SOD) activity and high levels of inflammatory cytokines in SPL-treated group were maintained in all three ICR stocks, although some variations were observed between the SPL-treated groups. Neuronal cell damages induced by SPL showed similar response in all three ICR stocks, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, Nissl staining analysis and expression analyses of apoptosis-related proteins. Thus, the results of this study provide strong evidence that Korl:ICR is similar to the other two ICR. Stocks in response to learning and memory capacity.