본 연구는 초등학생 대상의 인공지능 교육에서 다루는 알고리즘의 종류, 활용하는 도구와 데이터의 범주를 논의하는 것을 목적으로 초등예비교사 11명을 대상으로 15주 동안 데이터, 인공지능 알고리즘, 인공지능 교육 플랫폼을 교육 및 실습한 후 설문하여 초등학생 수준을 고려한 데이터와 알고리즘의 범주, 교육 도구를 제시하고 적합성을 분석하였다. 설문을 통해 교사가 수업목적에 따라 사전에 데이터를 선정 및 가공하여 교육에 사용하는 것이 가장 적합하며, 분류와 예측 알고리즘이 초등 인공지능 교육에서 다루기에 적절하다는 결론을 도출하였다. 또한, 엔트리가 인공지능 교육 도구로서 가장 적합하며 인공지능의 학습이라는 개념을 교육하기 위해 수학적 지식을 설명하는 자료가 필요함을 확인하였다. 본 연구는 초등학생의 인공지능 교육에서 다루는 알고리즘과 데이터의 범주를 구체적으로 제시하고 이와 관련된 수학교육에 대한 필요성과 적절한 교육 도구를 분석하였다는 점에서 의의가 있다.
Yuwei Zhao;Mesut Gor;Daria K. Voronkova;Hamed Gholizadeh Touchaei;Hossein Moayedi;Binh Nguyen Le
Steel and Composite Structures
/
제48권2호
/
pp.179-190
/
2023
Many recent attempts have sought accurate prediction of pile pullout resistance (Pul) using classical machine learning models. This study offers an improved methodology for this objective. Adaptive neuro-fuzzy inference system (ANFIS), as a popular predictor, is trained by a capable metaheuristic strategy, namely equilibrium optimizer (EO) to predict the Pul. The used data is collected from laboratory investigations in previous literature. First, two optimal configurations of EO-ANFIS are selected after sensitivity analysis. They are next evaluated and compared with classical ANFIS and two neural-based models using well-accepted accuracy indicators. The results of all five models were in good agreement with laboratory Puls (all correlations > 0.99). However, it was shown that both EO-ANFISs not only outperform neural benchmarks but also enjoy a higher accuracy compared to the classical version. Therefore, utilizing the EO is recommended for optimizing this predictive tool. Furthermore, a comparison between the selected EO-ANFISs, where one employs a larger population, revealed that the model with the population size of 75 is more efficient than 300. In this relation, root mean square error and the optimization time for the EO-ANFIS (75) were 19.6272 and 1715.8 seconds, respectively, while these values were 23.4038 and 9298.7 seconds for EO-ANFIS (300).
Kyung Won Kim;Jimi Huh ;Bushra Urooj ;Jeongjin Lee ;Jinseok Lee ;In-Seob Lee ;Hyesun Park ;Seongwon Na ;Yousun Ko
Journal of Gastric Cancer
/
제23권3호
/
pp.388-399
/
2023
Gastric cancer remains a significant global health concern, coercing the need for advancements in imaging techniques for ensuring accurate diagnosis and effective treatment planning. Artificial intelligence (AI) has emerged as a potent tool for gastric-cancer imaging, particularly for diagnostic imaging and body morphometry. This review article offers a comprehensive overview of the recent developments and applications of AI in gastric cancer imaging. We investigated the role of AI imaging in gastric cancer diagnosis and staging, showcasing its potential to enhance the accuracy and efficiency of these crucial aspects of patient management. Additionally, we explored the application of AI body morphometry specifically for assessing the clinical impact of gastrectomy. This aspect of AI utilization holds significant promise for understanding postoperative changes and optimizing patient outcomes. Furthermore, we examine the current state of AI techniques for the prognosis of patients with gastric cancer. These prognostic models leverage AI algorithms to predict long-term survival outcomes and assist clinicians in making informed treatment decisions. However, the implementation of AI techniques for gastric cancer imaging has several limitations. As AI continues to evolve, we hope to witness the translation of cutting-edge technologies into routine clinical practice, ultimately improving patient care and outcomes in the fight against gastric cancer.
Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
Steel and Composite Structures
/
제45권2호
/
pp.205-218
/
2022
Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.
본 논문에서는 피지컬 컴퓨팅를 활용한 문제해결 기반 안전교육 프로그램을 개발하고 이를 적용하여 중학생의 자기효능감과 흥미에 미치는 영향을 검증하였다. 구체적으로 본 연구에서 개발한 안전교육 프로그램은 창의적 문제해결 모형의 4단계인 문제 확인, 계획, 실행 및 평가의 단계와 피지컬 컴퓨팅 도구인 아두이노를 활용한 학습 활동을 포함한다. 중학교 3학년 77명을 대상으로 피지컬 컴퓨팅를 활용한 문제해결 기반 안전교육 프로그램을 실행한 결과 중학생의 자기효능감과 흥미 모두가 프로그램 참여 후에 유의미하게 상승하였다. 연구 결과를 토대로 피지컬 컴퓨팅과 문제해결 단계를 적용한 교육 프로그램의 효과성을 확인하고 학교 현장에서 피지컬 컴퓨팅 교육의 활성화 촉진을 위한 실천적 시사점을 제시하였다.
본 연구에서는 다양한 드론 영상 데이터셋을 효과적으로 학습하여 의미론적 분할의 정확도를 향상시키기 위한 combined segmentation network (CSN)를 제안하고 검증하였다. CSN은 세 가지 드론 데이터셋의 다양성을 고려하기 위하여 인코딩 영역의 전체를 공유하며, 디코딩 영역은 독립적으로 학습된다. CSN의 경우, 학습 시 모든 데이터셋에 대한 손실값을 고려하기 때문에 U-Net 및 pyramid scene parsing network (PSPNet)으로 단일 데이터셋을 학습할 때보다 학습 효율이 떨어졌다. 그러나 국내 자율주행 드론 영상에 CSN을 적용한 결과, CSN이 PSPNet에 비해 초기 학습 없이도 영상 내 화소를 적절한 클래스로 분류할 수 있는 것을 확인하였다. 본 연구를 통하여 CSN이 다양한 드론 영상 데이터셋을 효과적으로 학습하고 새로운 지역에 대한 객체 인식 정확성을 향상시키는 데 중요한 도구로써 활용될 수 있을 것으로 기대할 수 있다.
최근 반려동물 시장 규모가 커짐에 따라 반려동물 관련 사회적 문제도 대두되고 있다. 대표적으로 반려견 물림 사고, 유기견 문제, 안락사, 동물 학대 등이 있다. 대안으로 반려동물 관련 방송, 교육 앱 등 다양한 방식의 훈련 프로그램이 제공되고 있지만, 무엇을 먼저 가르쳐야 할지 모르는 초보 보호자들에게는 그리 효율적이지 못하다. 비교적 접근성이 용이한 훈련 앱이 다수 배포됐지만, 아직 사용자가 직접 훈련을 체험하며 익히는 방식의 앱은 부족한 실정이다. 이에 본 논문에서는 유니티 엔진을 활용해 더욱 효율적인 AR 기반의 반려견 훈련 모바일 앱을 제안한다. 사용성 평가 결과, 기존에 부재했던 요소의 추가로 사용자들 흥미도는 증대했고, 훈련 몰입감까지 제고되어 학습 효과가 향상됐다. 향후 개발 및 양산 검증까지 거쳐 배포된다면 반려동물 입양 계획을 세운 초보 보호자나 기존 보호자들에게 효과적인 훈련 앱이 될 것으로 기대된다.
연구목적: 본 연구는 캡스톤 디자인 설계 지역사회 치위생학 수업 후 학생들의 역량과 자기주도력 증가에 미치는 효과를 검증하고자 하였다. 연구방법: 연구 참여자는 C시에 소재한 4년제 대학에서 지역사회 치위생학 수업을 이수한는 치위생 전공 34명이었다. 설문도구는 치과위생사 역량 52문항과 자기주도력 20문항으로 구성되었다. 연구결과: 캡스톤 디자인 수업 후 전반적인 치과위생사의 역량이 증가하였고(p<0.05), 임상치위생 및 지역사회 건강증진 역량도 높은 증가를 보였다(p<0.001). 자기주도력에 따른 치과위생사의 역량 증가를 분석한 결과, 자기주도력이 낮은 집단일수록 임상 치위생 역량과 지역사회 건강증진 역량이 높은 향상을 보였다. 결론: 본 연구를 통해 캡스톤 디자인 설계지역사회 치위생학 수업이 학생들의 치과위생사 역량과 자기주도력을 향상시켰음을 확인하였고, 캡스톤 디자인 수업법은 미래사회에서 요구되는 역량을 배양하는데 탁월한 교수법임을 시사하였다.
Purpose : The purpose of this study was to examine the effects of a virtual reality-based complex cognitive training program for depression, cognitive function, and digital divide reduction in the elderly who have not been diagnosed with dementia or MCI. Methods : We enrolled 16 participants who were over 65 years old and not been diagnosed with dementia or MCI. We randomly divided into three groups (A, B, C). Participants underwent an 8-week virtual reality-based complex cognitive training program (60 minutes each session, twice per week). At a baseline, all participants completed questionnaires on general features, depression and cognitive function. After four weeks, all participants completed questionnaires on depression and cognitive function. After the end of the last program, participants conducted questionnaires on depression, cognitive function, and usability evaluation. Results : At the 8-week follow-up, 16 participants completed the program. Compared to the baseline, the average score of cognitive function was increased (from 26.5 to 28.5), although it was not statistically significant (p<.061). There were no significant differences between baseline and post-training evaluations on depression scores. The average score of usability evaluation was 75.56, which corresponds to good. Conclusion : Even though the results showed no statistically significant findings in cognitive function and depression after the virtual reality-based complex cognitive training intervention, this pilot study proposed the possibility of utilizing the virtual reality program as a tool that provides active learning opportunities for the elderly and helps improve their cognitive function through multi-sensory components. Also, the findings of this study suggested a positive reevaluation of the elderly's digital access capabilities while reducing the digital divide. A virtual reality-based complex cognitive training program improved the social network of the elderly. We expect that it will expand in size and help with their social participation of the elderly.
Background: Due to the importance of evidence-based research in plastic surgery, the authors of this study aimed to assess the accuracy of ChatGPT in generating novel systematic review ideas within the field of craniofacial surgery. Methods: ChatGPT was prompted to generate 20 novel systematic review ideas for 10 different subcategories within the field of craniofacial surgery. For each topic, the chatbot was told to give 10 "general" and 10 "specific" ideas that were related to the concept. In order to determine the accuracy of ChatGPT, a literature review was conducted using PubMed, CINAHL, Embase, and Cochrane. Results: In total, 200 total systematic review research ideas were generated by ChatGPT. We found that the algorithm had an overall 57.5% accuracy at identifying novel systematic review ideas. ChatGPT was found to be 39% accurate for general topics and 76% accurate for specific topics. Conclusion: Craniofacial surgeons should use ChatGPT as a tool. We found that ChatGPT provided more precise answers with specific research questions than with general questions and helped narrow down the search scope, leading to a more relevant and accurate response. Beyond research purposes, ChatGPT can augment patient consultations, improve healthcare equity, and assist in clinical decision-making. With rapid advancements in artificial intelligence (AI), it is important for plastic surgeons to consider using AI in their clinical practice to improve patient-centered outcomes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.