• 제목/요약/키워드: Learning Support Function

검색결과 200건 처리시간 0.022초

A Voice Controlled Service Robot Using Support Vector Machine

  • Kim, Seong-Rock;Park, Jae-Suk;Park, Ju-Hyun;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1413-1415
    • /
    • 2004
  • This paper proposes a SVM(Support Vector Machine) training algorithm to control a service robot with voice command. The service robot with a stereo vision system and dual manipulators of four degrees of freedom implements a User-Dependent Voice Control System. The training of SVM algorithm that is one of the statistical learning theories leads to a QP(quadratic programming) problem. In this paper, we present an efficient SVM speech recognition scheme especially based on less learning data comparing with conventional approaches. SVM discriminator decides rejection or acceptance of user's extracted voice features by the MFCC(Mel Frequency Cepstrum Coefficient). Among several SVM kernels, the exponential RBF function gives the best classification and the accurate user recognition. The numerical simulation and the experiment verified the usefulness of the proposed algorithm.

  • PDF

An active learning method with difficulty learning mechanism for crack detection

  • Shu, Jiangpeng;Li, Jun;Zhang, Jiawei;Zhao, Weijian;Duan, Yuanfeng;Zhang, Zhicheng
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.195-206
    • /
    • 2022
  • Crack detection is essential for inspection of existing structures and crack segmentation based on deep learning is a significant solution. However, datasets are usually one of the key issues. When building a new dataset for deep learning, laborious and time-consuming annotation of a large number of crack images is an obstacle. The aim of this study is to develop an approach that can automatically select a small portion of the most informative crack images from a large pool in order to annotate them, not to label all crack images. An active learning method with difficulty learning mechanism for crack segmentation tasks is proposed. Experiments are carried out on a crack image dataset of a steel box girder, which contains 500 images of 320×320 size for training, 100 for validation, and 190 for testing. In active learning experiments, the 500 images for training are acted as unlabeled image. The acquisition function in our method is compared with traditional acquisition functions, i.e., Query-By-Committee (QBC), Entropy, and Core-set. Further, comparisons are made on four common segmentation networks: U-Net, DeepLabV3, Feature Pyramid Network (FPN), and PSPNet. The results show that when training occurs with 200 (40%) of the most informative crack images that are selected by our method, the four segmentation networks can achieve 92%-95% of the obtained performance when training takes place with 500 (100%) crack images. The acquisition function in our method shows more accurate measurements of informativeness for unlabeled crack images compared to the four traditional acquisition functions at most active learning stages. Our method can select the most informative images for annotation from many unlabeled crack images automatically and accurately. Additionally, the dataset built after selecting 40% of all crack images can support crack segmentation networks that perform more than 92% when all the images are used.

스마트교육을 위한 오픈 디지털교과서 (Open Digital Textbook for Smart Education)

  • 구영일;박충식
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.177-189
    • /
    • 2013
  • 스마트교육에서 디지털교과서의 역할은 학습자와 대면하는 교육미디어로써 그 중요성은 재론의 여지없다. 이러한 디지털교과서는 학습자의 편의와 더불어 교수자, 콘텐츠 제작자, 유통업자를 위하여 표준화되어야 활성화되고 산업화될 수 있다. 본 연구에서는 다음과 같은 3가지 목표를 지향하는 디지털교과서 표준화 방안을 모색한다. (1) 디지털교과서는 온-오프 수업을 모두 지원하는 혼합학습 매체의 역할을 해야 하며, 특별한 전용뷰어 없이 표준을 준수하는 모든 EPUB 뷰어에서 실행가능 해야 하며, 기존의 이러닝 학습 콘텐츠와 학습관리시스템를 활용할 수 있도록 하며, 디지털 교과서를 사용하는 학습자의 정보를 추적 관리할 수 있는 트랙킹기능이 있으면서도, 오프라인 동안의 정보를 축적하여 서버와 통신할 수 있는 기능도 필요하다. 디지털교과서의 표준으로서 EPUB을 고려하는 이유는 디지털교과서가 책의 형태를 가져야 하는데 이를 위해서 따로 표준을 정할 필요가 없으며, EPUB 표준을 채택함으로써 풍부한 콘텐츠, 유통구조, 산업기반을 활용할 수 있기 때문이다. (2) 디지털교과서는 오픈소스를 적극 활용하여 저비용으로 현재 사용가능한 서비스를 구성하여 표준과 더불어 실제 실행 가능한 프로그램으로 제시되어야 하며, 관련 학습 콘텐츠가 오픈마켓의 형태로 운영될 수 있어야 한다. (3) 디지털교과서는 학습자에게 적절한 학습 피드백을 제공하기 위하여 모든 학습활동 정보를 축적하고 관리될 수 있는 인프라를 표준에 따라 구축하여 교육 빅데이터 처리의 기반을 제공하여야 한다. 이북 표준인 EPUB 3.0을 기반으로 하는 오픈 디지털교과서는 (1) 학습활동 정보를 기록하고 (2) 이 학습활동 지원을 위한 서버와 통신하여야 한다. 현재 표준으로 정해져 있지 않은 이북의 기록과 통신 기능을 EPUB 3.0의 JavaScript로 구현하여 현재 EPUB 3.0 뷰어에서도 활용하면서 이를 차세대 이북 표준 또는 교육을 위한 이북 표준(EPUB 3.0 for education)으로 제안하여 향후 제정된 표준 이북 뷰어에서는 JavaScript없이도 처리되도록 하는 전략이 필요하다. 향후 연구는 제안한 오픈 디지털교과서 표준에 의한 오픈소스 프로그램을 개발하고, 개발된 오픈 디지털교과서의 학습활동정보를 활용한 새로운 교육서비스 방안(교육 빅데이터 활용방안 포함)을 제시하는 것이다.

SVM 기법을 이용한 쉴드 TBM 디스크 커터 교환 주기 예측 (Prediction of replacement period of shield TBM disc cutter using SVM)

  • 나유성;김명인;김범주
    • 한국터널지하공간학회 논문집
    • /
    • 제21권5호
    • /
    • pp.641-656
    • /
    • 2019
  • 본 연구에서는 쉴드 TBM (Tunnel Boring Machine) 터널 디스크 커터의 적절한 교체 시기를 예측하기 위한 방법으로 머신러닝 기법을 사용한 방법을 제안하였으며, 이를 위해 국내 기 시공된 쉴드 TBM 현장의 데이터를 이용하여 다양한 머신러닝 알고리즘 중 SVM (Support Vector Machine)을 이용하여 예측 모델을 구축하고 그 성능을 평가하였다. 지반 조건별 디스크 커터의 마모와 높은 상관성을 갖는 TBM 기계 데이터와 디스크 커터 교체 이력을 분류하고, 이들을 SVM의 변수로 사용하여 3종류의 분류 함수를 적용하여 각각 학습을 한 후 예측을 수행한 결과, 각 지반 조건에 대해서 3종류의 SVM 분류 함수 중 전체적으로 RBF (Radial Basis Function) SVM의 예측성능이 가장 우수하며(평균적으로 80%의 정확도, 10% 오분류율), 지반 조건별로 구분 시 디스크 커터 교체 데이터의 수가 많을수록 예측 결과가 좋은 것으로 나타났다. 향후 많은 데이터를 축적하고 이를 모두 활용하여 학습모델을 지속적으로 발전시켜 나간다면 이와 같은 디스크 커터 교환주기를 예측하기 위한 머신러닝 기법의 실무 적용성이 매우 클 것으로 기대한다.

MetaGene : SCORM 기반 학습 객체의 메타데이터 생성 및 컨텐츠 패키징 (MetaGene: Metadata Generation and Contents Packaging for Learning Objects based on SCORM)

  • 정영식
    • 컴퓨터교육학회논문지
    • /
    • 제6권3호
    • /
    • pp.75-85
    • /
    • 2003
  • 본 연구는 SCORM 기반 학습 객체의 메타데이타 생성 즉 Asset, SCO, Contents Aggregation과 Contents Package에 대한 메타데이터를 생성하는 시스템(MetaGene)을 개발한다. SCORM 을 지원하는 LMS내 API 어댑터와 인터페이스를 위한 학습 객체 내에 API 활성화 함수를 내장시키고, 데이터 모델을 기반으로 학습 과정을 트래킹 하는 코드도 포함 시킨다. 또한 학습 객체들이 LMS에 전송되게 PIF(Package Interchange File)로 패키징 시킨다. MetaGene에 생성된 학습객체의 메타데이터와 컨텐츠 패키지의 manifest file을 $SCORM^{(TM)}$ Conformance Testsuite을 이용하여 유효성을 검증한다.

  • PDF

A Win/Lose prediction model of Korean professional baseball using machine learning technique

  • Seo, Yeong-Jin;Moon, Hyung-Woo;Woo, Yong-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.17-24
    • /
    • 2019
  • In this paper, we propose a new model for predicting effective Win/Loss in professional baseball game in Korea using machine learning technique. we used basic baseball data and Sabermetrics data, which are highly correlated with score to predict and we used the deep learning technique to learn based on supervised learning. The Drop-Out algorithm and the ReLu activation function In the trained neural network, the expected odds was calculated using the predictions of the team's expected scores and expected loss. The team with the higher expected rate of victory was predicted as the winning team. In order to verify the effectiveness of the proposed model, we compared the actual percentage of win, pythagorean expectation, and win percentage of the proposed model.

웹 콘텐츠를 활용한 학습용 타자 연습 어플리케이션의 설계와 구현 (Design and Implementation of Typing Practice Application for Learning Using Web Contents)

  • 김채원;황소영
    • 한국멀티미디어학회논문지
    • /
    • 제24권12호
    • /
    • pp.1663-1672
    • /
    • 2021
  • There are various typing practice applications. In addition, research cases on learning applications that support typing practice have been reported. These services are usually provided in a way that utilizes their own built-in text. Learners collect various contents through web services and use them a lot for learning. Therefore, this paper proposes a learning application to increase the learning effect by collecting vast amounts of web content and applying it to typing practice. The proposed application is implemented using Tkinter, a GUI module of Python. BeautifulSoup module of Python is used to extract information from the web. In order to process the extracted data, the NLTK module, which is an English data preprocessor, and the KoNLPy module, which is a Korean language processing module, are used. The operation of the proposed function is verified in the implementation and experimental results.

N-스크린 환경에서 소셜 러닝을 위한 개인 위치정보 지원 커뮤니케이션 매니저 설계 및 구현 (Communication Manager Design and Implementation of Individual Location Information for Social Learning in N-Screen)

  • 김경록;변재희;문남미
    • 전자공학회논문지CI
    • /
    • 제48권3호
    • /
    • pp.27-35
    • /
    • 2011
  • 사용자간 상호작용과 협업 기능을 바탕으로 한 소셜 네트워크 서비스 발달에 따라 이를 교수-학습에 활용하면서 개인 체험 중심의 구성주의와 접목되어 소셜 러닝으로 발전하고 있다. 이를 보다 잘 활용하기 위해서는 N-Screen웹, 스마트폰, IPTV)을 지원하는 커뮤니케이션 모델이 필요하다. 커뮤니케이션 모델은 학습자-교수자-시스템간의 상호작용을 지원하는 것이다. 하지만, 지금까지는 웹기반 이러닝 시스템 커뮤니케이션에 대한 연구가 주를 이루고 있다. 이에 본 연구에서는 소셜 러닝을 위한 서비스 환경을 N-Screen으로 확대하고, 끊김 없는 서비스를 위해 개인의 위치정보를 학습 활동에 활용할 수 있도록 지원하기 위한 커뮤니케이션 매니저를 설계하고 구현하고자 한다. 커뮤니케이션 매니저는 N-Screen 서비스를 위한 학습자의 유스케이스 도출 및 요구 기능을 정의하고, 이를 바탕으로, 커뮤니케이션 기능을 설계한다. 또한, 단말 각각의 서비스 특성을 고려하여, 개인화 위치정보를 반영 할 수 있도록 한다.

RFID 모바일 기기용 실내.외 체험학습 시스템 설계 및 구현 (A Design and Implementation of Learning System to Support Indoor and Outdoor Field Trips Using RFID Mobile Device)

  • 유정수;백현기
    • 정보교육학회논문지
    • /
    • 제14권4호
    • /
    • pp.527-536
    • /
    • 2010
  • 유비쿼터스 컴퓨팅과 모바일 기술은 식물원, 공원, 박물관이나 교실 등과 같은 다양한 실내외 공간에서의 참신한 학습 경험들을 가능하게 하는 새로운 기술이다. 본 연구에서는 체험학습자들이 유비쿼터스 환경의 실내외 공간에서 RFID 리더기가 부착된 모바일기기를 가지고 체험학습이 가능한 시스템을 개발하였다. 개발된 시스템은 학습자가 학습자의 학습 수준에 따라 학습 내용을 제공하여 개인별 학습 활동이 가능하도록 설계하였다. 실험결과 학습자들은 RFID 태그가 부착된 체험학습장에서의 체험학습에 적극적으로 흥미를 느꼈다.

  • PDF

Deep learning neural networks to decide whether to operate the 174K Liquefied Natural Gas Carrier's Gas Combustion Unit

  • Sungrok Kim;Qianfeng Lin;Jooyoung Son
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.383-384
    • /
    • 2022
  • Gas Combustion Unit (GCU) onboard liquefied natural gas carriers handles boil-off to stabilize tank pressure. There are many factors for LNG cargo operators to take into consideration to determine whether to use GCU or not. Gas consumption of main engine and re-liquefied gas through the Partial Re-Liquefaction System (PRS) are good examples of these factors. Human gas operators have decided the operation so far. In this paper, some deep learning neural network models were developed to provide human gas operators with a decision support system. The models consider various factors specially into GCU operation. A deep learning model with Sigmoid activation functions in input layer and hidden layers made the best performance among eight different deep learning models.

  • PDF