The aim of this study is to analyse of elements and structure of consciousness theory in the 1887 Psychology written by John Dewey, and to research its educational implications. Conclusions are as follows: Firstly, consciousness theory articulated in first edition of Dewey's Psychology was influenced by neo-Hegelian G. S. Hall, and then characteristics of its theory was metaphysical and idealistic. But after of researching the work of William James, his approach to consciousness changed surprisingly from idealistic to experimental. His experimental approach and scientific attitude to it influenced the formation and development of advanced theories in his epistemology, axiology and pedagogy. Secondly, the structure of consciousness expressed by Dewey has three forms such as knowledge, feeling and will(or volition). This forms are too dynamic and unitary. Dewey considered cognition, feeling, will to be integral functions of each self. The tripartite functions of self, moreover, are unified in will. In other word, will combines subjective feeling and objective knowledge as one self. Will regulates impulse because it powers some stimulus into activity of self. In this view point, his theory of consciousness differs from traditional theories about consciousness for emphasizing dynamic relations and functions. Thirdly, Dewey's theory of consciousness will give some important implications to educational field. It is necessary to fundamental arguments about conscious conditions of learners as a human. For it is impossible to establish some aim of learning, to organize meaningful contents of learning, and also to create some effective methods of learning without consideration of this conditions. And it is important to construct and organize the contents and methods of learning for widening and deepening of educational experiences. Then consciousness and experiences of learners interact each other, so then they will produce some meaningful results of learning in this process.
Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.2168-2187
/
2021
The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.
동영상 안정화 기술은 최근 1인 미디어 시장이 거대화됨에 따라 그 중요성이 점점 커지고 있는 카메라 기술 중 하나이다. 딥러닝 기반의 기존 방법들에서는 안정화 전/후 동영상 데이터 쌍을 사용하였으나 동영상의 특성상 동기화된 안정화 전/후 데이터를 만드는 것은 많은 시간과 노력이 필요하다. 최근 이러한 문제를 완화하기 위하여 안정화 전 데이터만을 사용하는 비지도 학습 방법이 제시되고 있다. 본 논문에서는 비지도 학습 방법의 하나인 Convolutional Autoencoder 구조를 사용하여 안정화 전/후 동영상 데이터 쌍 없이 안정화 전 영상만으로 안정화 궤적을 학습하는 네트워크 구조를 제안한다. 네트워크 입력 및 출력으로 옵티컬 플로우를 사용하고 네트워크 경량화 및 노이즈 최소화를 위해 옵티컬 플로우를 Grid 단위로 맵핑하여 사용했다. 또한 비지도 학습 방법으로 안정화된 궤적을 생성하기 위해 옵티컬 플로우를 부드럽게 만드는 손실함수를 정의하였고 결과 비교를 통해 손실함수의 의도대로 부드러운 궤적을 생성하도록 네트워크가 학습되었음을 확인했다.
In this paper, we propose a modified elman neural network structure for nonlinear system identification. The proposed structure is that all of network output feed back into hidden units and output units. Learning algorithm is standard back-propagation algorithm. The simulation showed the effectiveness of using the modified elman neural network structure in the nonlinear system identification.
구조물에 장기적으로 발생하는 노후화를 정량적으로 파악하기 위해 상시진동 데이터를 활용한 일반화된 모니터링 시스템에 관한 연구가 세계적으로 활발히 수행중이다. 본 연구에서는 구조물에서 장기적으로 취득되는 동특성을 앙상블 학습에 활용하여 구조물의 이상을 감지하기 위한 보급형 엣지 컴퓨팅 시스템을 구축하였다. 시스템의 하드웨어는 라즈베리파이와 보급형 가속도계, 기울기센서, GPS RTK 모듈, 로라 모듈로 구성됐다. 실험실 규모의 구조물 모형 진동실험을 통해 동특성을 활용한 앙상블 학습의 구조물 이상감지를 검증하였으며, 실험을 기반으로 한 실시간 동특성 추출 분산처리 알고리즘을 라즈베리파이에 탑재하였다. 구축된 시스템을 하우징하고 포항시 행정복지센터에 설치하여 데이터를 취득함으로써 개발된 시스템의 현장 적용성을 검증하였다.
최근 교육시장의 변화와 코로나로 인해 과외 시장 및 온라인 학습시장으로 소비자들이 이동하여 대형 교육 프랜차이즈 사업이 매출액을 중시하는 입장에서 수익구조를 극대화하는 비즈니스 모델로 재편되고 있다. 교육환경의 변화로 교수자 중심에서 학생 중심으로 개별 맞춤 서비스를 제공하고, 학생들 스스로가 자기주도 학습이 가능할 수 있도록 학습동기를 부여하고 학습기술을 배양할 수 있는 새로운 학습균형 모델이 요구되고 있다. 본 논문에서는 수학 교육서비스 프랜차이즈 사업을 운영하는 가맹본부 입장에서 최근 교육 트렌드와 소비자의 욕구를 만족하면서 기업의 수익구조를 향상 시킬 수 있는 새로운 수학 프랜차이즈 모델(K-MODEL)을 제안한다. K-MODEL은 차별화 콘텐츠 및 서비스, 학습 및 운영 프로세스, 학습 성취도 향상을 위한 다양한 프로그램을 개발하여 가맹본부와 가맹사업을 진행하는 가맹점사업자들이 안정적인 수익구조를 가질 것으로 기대한다.
연구목적: 본 논문은 사회재난 및 안전사고 발생에 따른 재난 유형별 조사 분석 정보에 대한 공통 데이터 도출과 머신 러닝 기반 사고 예측을 지원하는 특성화 데이터를 통합한 사회재난 및 안전사고 데이터 셋 구조를 도출하는 연구에 초점을 맞추었다. 연구방법: 기존 조사 분석 보고서의 사고 분류, 원인, 피해 등을 표시할 수 있는 데이터를 중심으로 머신 러닝에 활용할 수 있는 특성화 데이터 도출과 이에 대한 XML 기반의 표준 체계를 도출한다. 연구결과: XML 기반의 표준 스키마 도출과 사례 제시를 하였다. 결론: 본 논문에서 도출된 표준안을 사회재난 및 안전사고 데이터셋 구축에 활용하고, 이를 기반으로 여러 분야에서 재난 사고 및 안전의 위험을 예측할 수 있는 응용 기술을 개발할 수 있게 지원한다.
스마트 디바이스와 사물 인터넷의 등장은 온라인과 오프라인의 경계를 허무는 O2O 서비스의 등장으로 이어졌다. 이는 오프라인 시장에 온라인 서비스의 강점이 덧붙여지면서 오프라인 공간이 디지털화가 됨을 의미하며, 오프라인 산업의 판도를 바꾸고 있다. 이러한 오프라인 시장의 변화 양상과는 다르게 전시 산업은 오프라인 산업에서 꾸준한 성장세를 보이고 있으나, 전시 산업 또한 O2O 서비스와의 접목으로 새로운 부가가치를 창출이 가능한 것으로 보았다. 본 논문은 코엑스에서 열린 '2015 서울 디자인 페스티벌'에서 20명을 대상으로 설문을 진행하였다. 설문은 공간 구조에 대한 분석 용도 및 기계학습을 위한 데이터 세트를 생성하는데 사용되었다. 본 논문은 기존의 공간 구조에 대한 분석연구가 가진 문제점을 파악하여 공간 구조에 대한 새로운 분석 방법을 제안하였다. 또한 생성된 데이터 세트를 기반으로 기계학습을 진행하여 전시 공간 내 O2O 서비스 배치를 위한 평가 모델을 제안한다.
This paper proposes a fusion imaging-based coating-defect classification method for steel structures that uses zero-shot learning. In the proposed method, a halogen lamp generates heat energy on the coating surface of a steel structure, and the resulting heat responses are measured by an infrared (IR) camera, while photos of the coating surface are captured by a charge-coupled device (CCD) camera. The measured heat responses and visual images are then analyzed using zero-shot learning to classify the coating defects, and the estimated coating defects are visualized throughout the inspection surface of the steel structure. In contrast to older approaches to coating-defect classification that relied on visual inspection and were limited to surface defects, and older artificial neural network (ANN)-based methods that required large amounts of data for training and validation, the proposed method accurately classifies both internal and external defects and can classify coating defects for unobserved classes that are not included in the training. Additionally, the proposed model easily learns about additional classifying conditions, making it simple to add classes for problems of interest and field application. Based on the results of validation via field testing, the defect-type classification performance is improved 22.7% of accuracy by fusing visual and thermal imaging compared to using only a visual dataset. Furthermore, the classification accuracy of the proposed method on a test dataset with only trained classes is validated to be 100%. With word-embedding vectors for the labels of untrained classes, the classification accuracy of the proposed method is 86.4%.
코로나19로 인하여 개학연기부터 장기화된 온라인 원격수업으로 학습 손실과 교육격차에 대한 연구는 많이 진행되었으며, 대부분 교육격차 현상에 대한 연구가 주를 이루었다. 향후 이와 같은 팬데믹 상황이 온다면, 교육격차 해소를 위한 근본적인 정책이 필요하다. 근본적인 해결책은 교육격차 현상에 대한 이해뿐만 아니라 그 현상의 이면의 구조를 파악해야 한다. 따라서 본 연구는 구조주의 관점에서 코로나19로 인한 교육격차를 시스템사고의 원형으로 모델링하고 그 구조를 파악하고자 하였다. 그리고 기존의 교육격차 해소를 위한 정책들로 발생한 의도하지 않은 결과를 살펴보았다. 향후 유사한 재난상황에 대응하기 위해 본 연구의 구조를 기반으로 디지털 격차해소를 위한 정책, 기초학력 지원, 원격수업에 대한 품질 향상, 자기주도 학습에 대해 논의하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.