• Title/Summary/Keyword: Learning Structure

Search Result 2,210, Processing Time 0.023 seconds

Improving Transformer with Dynamic Convolution and Shortcut for Video-Text Retrieval

  • Liu, Zhi;Cai, Jincen;Zhang, Mengmeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2407-2424
    • /
    • 2022
  • Recently, Transformer has made great progress in video retrieval tasks due to its high representation capability. For the structure of a Transformer, the cascaded self-attention modules are capable of capturing long-distance feature dependencies. However, the local feature details are likely to have deteriorated. In addition, increasing the depth of the structure is likely to produce learning bias in the learned features. In this paper, an improved Transformer structure named TransDCS (Transformer with Dynamic Convolution and Shortcut) is proposed. A Multi-head Conv-Self-Attention module is introduced to model the local dependencies and improve the efficiency of local features extraction. Meanwhile, the augmented shortcuts module based on a dual identity matrix is applied to enhance the conduction of input features, and mitigate the learning bias. The proposed model is tested on MSRVTT, LSMDC and Activity-Net benchmarks, and it surpasses all previous solutions for the video-text retrieval task. For example, on the LSMDC benchmark, a gain of about 2.3% MdR and 6.1% MnR is obtained over recently proposed multimodal-based methods.

Smart modified repetitive-control design for nonlinear structure with tuned mass damper

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • A new intelligent adaptive control scheme was proposed that combines observer disturbance-based adaptive control and fuzzy adaptive control for a composite structure with a mass-adjustable damper. The most important advantage is that the control structures do not need to know the uncertainty limits and the interference effect is eliminated. Three adjustable parameters in LMI are used to control the gain of the 2D fuzzy control. Binary performance indices with weighted matrices are constructed to separately evaluate validation and training performance using the revalidation learning function. Determining the appropriate weight matrix balances control and learning efficiency and prevents large gains in control. It is proved that the stability of the control system can be ensured by a linear matrix theory of equality based on Lyapunov's theory. Simulation results show that the multilevel simulation approach combines accuracy with high computational efficiency. The M-TMD system, by slightly reducing critical joint load amplitudes, can significantly improve the overall response of an uncontrolled structure.

The Relationships among High School Students' Conceptual Understanding of Molecular Structure and Cognitive Variables (분자 구조에 대한 고등학생들의 개념 이해도와 인지 변인의 관계)

  • Noh, Tae-Hee;Seo, In-Ho;Cha, Jeong-Ho;Kim, Chang-Min;Kang, Suk-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.3
    • /
    • pp.497-505
    • /
    • 2001
  • In this study, the relationships among students' conceptual understanding of molecular structure and cognitive variables were investigated for 165 high school students. After they had learned 'High School Chemistry II' for two semesters, the tests of conception concerning molecular structure, spatial visualization ability, logical thinking ability, mental capacity, and learning approach were administered. The results indicated that students' conceptual understanding of molecular structure was not sound, and several misconceptions were found. The scores of the conception test were significantly correlated with all the cognitive variables studied. Multiple regression analyses were conducted to examine the predictive influences of students' cognitive variables on their conceptual understanding. Meaningful learning approach was the most significant predictor and were followed by logical thinking ability, rote learning approach, and mental capacity. However, spatial visualization ability did not have the predictive power.

  • PDF

Efficient Semantic Structure Analysis of Korean Dialogue Sentences using an Active Learning Method (능동학습법을 이용한 한국어 대화체 문장의 효율적 의미 구조 분석)

  • Kim, Hark-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.5
    • /
    • pp.306-312
    • /
    • 2008
  • In a goal-oriented dialogue, speaker's intention can be approximated by a semantic structure that consists of a pair of a speech act and a concept sequence. Therefore, it is very important to correctly identify the semantic structure of an utterance for implementing an intelligent dialogue system. In this paper, we propose a model to efficiently analyze the semantic structures based on an active teaming method. To reduce the burdens of high-level linguistic analysis, the proposed model only uses morphological features and previous semantic structures as input features. To improve the precisions of semantic structure analysis, the proposed model adopts CRFs(Conditional Random Fields), which show high performances in natural language processing, as an underlying statistical model. In the experiments in a schedule arrangement domain, we found that the proposed model shows similar performances(92.4% in speech act analysis and 89.8% in concept sequence analysis) to the previous models although it uses about a third of training data.

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

Design of Mobile Application for Learning Chemistry using Augmented Reality

  • Kim, Jin-Woong;Hur, Jee-Sic;Ha, Min Woo;Kim, Soo Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.139-147
    • /
    • 2022
  • The goal of this study is to develop a mobile application so that a person who is new to chemistry can easily acquire the knowledge necessary for chemical structure learning using image tracking technology. The point of this study is to provide a new chemical structure learning experience by recognizing a two-dimensional picture, augmenting the chemical structure into a three-dimensional object, showing it on the user's screen, and using a service that simultaneously provides related information in multiple fields. characteristic. Login API and real-time database technology were used for safe and real-time data management, and an application was developed using image tracking technology for image recognition and 3D object augmentation service. In the future, we plan to use the chemical structure data library to efficiently load and output data.

Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems (블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축)

  • Jang, Jiwon;An, Hyojoon;Lee, Jong-Han;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.80-86
    • /
    • 2019
  • As computer performance improves, research using deep learning are being actively carried out in various fields. Recently, deep learning technology has been applying to the safety evaluation for structures. In particular, the internal blades of a turbine structure requires experienced experts and considerable time to detect surface damages because of the difficulty of separation of the blades from the structure and the dark environmental condition. This study proposes a Faster R-CNN deep learning model that can detect surface damages on the internal blades, which is one of the primary elements of the turbine structure. The deep learning model was trained using image data with dent and punch damages. The image data was also expanded using image filtering and image data generator techniques. As a result, the deep learning model showed 96.1% accuracy, 95.3% recall, and 96% precision. The value of the recall means that the proposed deep learning model could not detect the blade damages for 4.7%. The performance of the proposed damage detection system can be further improved by collecting and extending damage images in various environments, and finally it can be applicable for turbine engine maintenance.

Evaluation of Transfer Learning in Gastroscopy Image Classification using Convolutional Neual Network (합성곱 신경망을 활용한 위내시경 이미지 분류에서 전이학습의 효용성 평가)

  • Park, Sung Jin;Kim, Young Jae;Park, Dong Kyun;Chung, Jun Won;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.213-219
    • /
    • 2018
  • Stomach cancer is the most diagnosed cancer in Korea. When gastric cancer is detected early, the 5-year survival rate is as high as 90%. Gastroscopy is a very useful method for early diagnosis. But the false negative rate of gastric cancer in the gastroscopy was 4.6~25.8% due to the subjective judgment of the physician. Recently, the image classification performance of the image recognition field has been advanced by the convolutional neural network. Convolutional neural networks perform well when diverse and sufficient amounts of data are supported. However, medical data is not easy to access and it is difficult to gather enough high-quality data that includes expert annotations. So This paper evaluates the efficacy of transfer learning in gastroscopy classification and diagnosis. We obtained 787 endoscopic images of gastric endoscopy at Gil Medical Center, Gachon University. The number of normal images was 200, and the number of abnormal images was 587. The image size was reconstructed and normalized. In the case of the ResNet50 structure, the classification accuracy before and after applying the transfer learning was improved from 0.9 to 0.947, and the AUC was also improved from 0.94 to 0.98. In the case of the InceptionV3 structure, the classification accuracy before and after applying the transfer learning was improved from 0.862 to 0.924, and the AUC was also improved from 0.89 to 0.97. In the case of the VGG16 structure, the classification accuracy before and after applying the transfer learning was improved from 0.87 to 0.938, and the AUC was also improved from 0.89 to 0.98. The difference in the performance of the CNN model before and after transfer learning was statistically significant when confirmed by T-test (p < 0.05). As a result, transfer learning is judged to be an effective method of medical data that is difficult to collect good quality data.

A Co-Evolutionary Approach for Learning and Structure Search of Neural Networks (공진화에 의한 신경회로망의 구조탐색 및 학습)

  • 이동욱;전효병;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.111-114
    • /
    • 1997
  • Usually, Evolutionary Algorithms are considered more efficient for optimal system design, However, the performance of the system is determined by fitness function and system environment. In this paper, in order to overcome the limitation of the performance by this factor, we propose a co-evolutionary method that two populations constantly interact and coevolve. In this paper, we apply coevolution to neural network's evolving. So, one population is composed of the structure of neural networks and other population is composed of training patterns. The structure of neural networks evolve to optimal structure and, at the same time, training patterns coevolve to feature patterns. This method prevent the system from the limitation of the performance by random design of neural network structure and inadequate selection of training patterns. In this time neural networks are trained by evolution strategies that are able to apply to the unsupervised learning. And in the coding of neural networks, we propose the method to maintain nonredundancy and character preservingness that are essential factor of genetic coding. We show the validity and the effectiveness of the proposed scheme by applying it to the visual servoing of RV-M2 robot manipulators.

  • PDF

Short-Term Electrical Load Forecasting using Neuro-Fuzzy Models (뉴로-퍼지 모델을 이용한 단기 전력 수요 예측시스템)

  • Park, Yeong-Jin;Sim, Hyeon-Jeong;Wang, Bo-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.107-117
    • /
    • 2000
  • This paper proposes a systematic method to develop short-term electrical load forecasting systems using neuro-fuzzy models. The primary goal of the proposed method is to improve the performance of the prediction model in terms of accuracy and reliability. For this, the proposed method explores the advantages of the structure learning of the neuro-fuzzy model. The proposed load forecasting system first builds an initial structure off-line for each hour of four day types and then stores the resultant initial structures in the initial structure bank. Whenever a prediction needs to be made, the proposed system initializes the neuro-fuzzy model with the appropriate initial structure stored and trains the initialized model. In order to demonstrate the viability of the proposed method, we develop an one hour ahead load forecasting system by using the real load data collected during 1993 and 1994 at KEPCO. Simulation results reveal that the prediction system developed in this paper can achieve a remarkable improvement on both accuracy and reliability compared with the prediction systems based on multilayer perceptrons, radial basis function networks, and neuro-fuzzy models without the structure learning.

  • PDF