• Title/Summary/Keyword: Learning Space

Search Result 1,498, Processing Time 0.025 seconds

An Analysis of Youth EEG based on the Emotional Color Scheme Images by Different Space of Community Facilities (공동주택 커뮤니티시설의 공간별 감성색채배색 이미지에 따른 청소년의 뇌파분석)

  • Hwang, Yeon-Sook;Kim, Sun-Young;Kim, Ju-Yeon
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.171-178
    • /
    • 2013
  • In this study, we sought to find out the effect of different emotional interior images of the community facilities in an apartment complex on a youth brain wave by analyzing an Electroencephalograph (EEG). Based on the frequency of usage, we selected learning facilities, cultural facilities, and sport facilities. For brain stimulation, the visual stimulants with three different emotional words, cheerful, gentle, and elegant, were used based on I.R.I image scale. Overall, total nine different emotional images were used. Based on our findings, we conclude that: first, in order to improve learning concentration of the youth, a learning facility for the youth needs to be designed by skillfully combining the soft and comfortable colors from the gentle image and the murky and dark colors from the elegant image. Second, when designing a cultural facility, it is preferable to consider the elegant image for a calm and comfortable space. Third, a sport facility design needs to preclude dark colors and apply light colors to create a dynamic and lively space. Furthermore, we found out that the youth has established static images of each functionally different facility through their experience and learning. Therefore, it is imperative to plan community facilities in an apartment complex in a way to connect the space function with the emotional characteristics of the youth in order to support and encourage energetic activities and learning of the community youth.

Deep Learning-based Interior Design Recognition (딥러닝 기반 실내 디자인 인식)

  • Wongyu Lee;Jihun Park;Jonghyuk Lee;Heechul Jung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.47-55
    • /
    • 2024
  • We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.

An Automatic Parking Space Identification System using Deep Learning Techniques (딥러닝 기법을 이용한 주차 공간 자동 식별 시스템)

  • Seo, Min-Gyung;Ohm, Seong-Yong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.635-640
    • /
    • 2021
  • In this paper, we describe a parking space identification system that can automatically identify empty parking lot spaces from a parking lot photo. This system is based on a deep learning technique, and the accuracy of the identification result is good by learning various existing parking lot images. It could be applied to the existing parking management system. This system was also developed as a smartphone application for easy testing. Therefore, if you take a picture of a parking lot through a smartphone camera, the captured image is automatically recognized and an empty parking space can be automatically identified.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

A Study for Space-based Energy Management System to Minimizing Power Consumption in the Big Data Environments (소비전력 최소화를 위한 빅데이터 환경에서의 공간기반 에너지 관리 시스템에 관한 연구)

  • Lee, Yong-Soo;Heo, Jun;Choi, Yong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.229-235
    • /
    • 2013
  • This paper proposed the method to reduce and manage the amount of using power by using the Self-Learning of inference engine that evolves through learning increasingly smart ways for each spaces with in the Space-Based Energy Management System (SEMS, Space-based Energy Management System) that is defined as smallest unit space with constant size and similar characteristics by using the collectible Big Data from the various information networks and the informations of various sensors from the existing Energy Management System(EMS), mostly including such as the Energy Management Systems for the Factory (FEMS, Factory Energy Management System), the Energy Management Systems for Buildings (BEMS, Building Energy Management System), and Energy Management Systems for Residential (HEMS, Home Energy Management System), that is monitoring and controlling the power of systems through various sensors and administrators by measuring the temperature and illumination.

Information-Based Urban Regeneration for Smart Education Community (스마트 교육 커뮤니티 정보기반 도시재생)

  • Kimm, Woo-Young;Seo, Boong-Kyo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.12
    • /
    • pp.13-20
    • /
    • 2018
  • This research is to analyze the public cases of information facilities in terms of central circulations in multi level volumes such as atrium or court which provide visual intervention between different spaces and physical connections such as bridges. Hunt Library design balances the understood pre-existing needs with the University's emerging needs to create a forward-thinking learning environment. While clearly a contemporary structure within a traditional context of the NCSU campus, the Hunt Library provides a positive platform for influencing its surroundings. Both technical and programmatic innovations are celebrated as part of the learning experience and provide a versatile and stimulating environment for students. Public library as open spaces connecting to an interactive social domain over communities can provide variety of learning environments, or technology based labs. There are many cases of the public information spaces with dynamic networks where participants can play their roles in physical space as well as in the intellectual stimulation. In the research, new public projects provide typologies of information spaces with user oriented media. The research is to address a creative transition between the reading space and the experimental links of the integration of state-of-the-art technology is highly visible in the building's design. The user-friendly browsing system that replaces the traditional browsing with the virtual shelves classified and archived by their form, is to reduce the storage space of the public library and it is to allow more space for collaborative learning. In addition to the intelligent robot of information storages, innovative features is the large-scale visualization space that supports team experiments to carry out collaborative online works and therefore the public library's various programs is to provide visitors with more efficient participatory environment.

Evaluation Model Based on Machine Learning for Optimal O2O Services Layout(Placement) in Exhibition-space (전시공간 내 최적의 O2O 서비스 배치를 위한 기계학습 기반평가 모델)

  • Lee, Joon-Yeop;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.3
    • /
    • pp.291-300
    • /
    • 2016
  • The emergence of smart devices and IoT leads to the appearance of O2O service to blur the difference between online and offline. As online services' merits were added to the offline market, it caused a change in the dynamics of the offline industry, which means the offline-space's digitization. Unlike these changing aspects of the offline market, exhibition industry grows steadily in the industry, however it is also possible to create a new value added by combining O2O service. We conducted a survey targeting 20 spectators in '2015 Seoul Design Festival' at COEX. The survey was used to analysis of the spatial structure and generate the dataset for machine learning. We identified problems with the analysis study of the existing spatial structure, and based on this investigation we propose a new method for analyzing a spatial structure. Also by processing a machine learning technique based on the generated dataset, we propose a novel evaluation model of exhibition-space cells for O2O service layout.

A Comparative Research on the Facility Criteria of Cities·Provinces Education Office and Space Program of Competition School in Chung-buk Province (시·도 교육청별 중·고등학교의 시설기준과 충북지역 현상설계 학교의 스페이스프로그램 비교 연구)

  • Chang, Dong-Hoon;Jung, Jin-Ju
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.22 no.3
    • /
    • pp.3-11
    • /
    • 2015
  • Under the establishment and operating regulations of school presented only minimum standard for the founding of the school. Therefore, It is intended to suggest the reasonable space standard of the school facility, through comparison & analysis of facility standard in each city and provincial education office. Especially, The facilities standard of Chungcheongbuk-do Office Of Education has been exceeded standardization of architectural space which is proposed the Ministry of Education, and they has made the various learning space reflected creative ideas by designing all of the new school competition since 2000. In order to deal with reacting the changing method of studying like as the examples of Middle & High school in Chungcheongbuk-do, they need to set aside the enough required area for a head of students and the common space which is more than 40% in the total area according to the various learning space, securing the supporting facilities, and break & movement of the students. Moreover, Each of the city and provincial education offices are needed to establish the standardization of proper area for space organization of the planned school throughout upcoming competition.

Application of Deep Learning to Solar Data: 1. Overview

  • Moon, Yong-Jae;Park, Eunsu;Kim, Taeyoung;Lee, Harim;Shin, Gyungin;Kim, Kimoon;Shin, Seulki;Yi, Kangwoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2019
  • Multi-wavelength observations become very popular in astronomy. Even though there are some correlations among different sensor images, it is not easy to translate from one to the other one. In this study, we apply a deep learning method for image-to-image translation, based on conditional generative adversarial networks (cGANs), to solar images. To examine the validity of the method for scientific data, we consider several different types of pairs: (1) Generation of SDO/EUV images from SDO/HMI magnetograms, (2) Generation of backside magnetograms from STEREO/EUVI images, (3) Generation of EUV & X-ray images from Carrington sunspot drawing, and (4) Generation of solar magnetograms from Ca II images. It is very impressive that AI-generated ones are quite consistent with actual ones. In addition, we apply the convolution neural network to the forecast of solar flares and find that our method is better than the conventional method. Our study also shows that the forecast of solar proton flux profiles using Long and Short Term Memory method is better than the autoregressive method. We will discuss several applications of these methodologies for scientific research.

  • PDF

Velocity Dispersion Bias of Galaxy Groups classified by Machine Learning Algorithm

  • Lee, Youngdae;Jeong, Hyunjin;Ko, Jongwan;Lee, Joon Hyeop;Lee, Jong Chul;Lee, Hye-Ran;Yang, Yujin;Rey, Soo-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • We present a possible bias in the estimation of velocity dispersions for galaxy groups due to the contribution of subgroups which are infalling into the groups. We execute a systematic search for flux-limited galaxy groups and subgroups based on the spectroscopic galaxies with r < 17.77 mag of SDSS data release 12, by using DBSCAN (Density-Based Spatial Clustering of Application with Noise) and Hierarchical Clustering Method which are well known unsupervised machine learning algorithm. A total of 2042 groups with at least 10 members are found and ~20% of groups have subgroups. We found that the estimation of velocity dispersions of groups using total galaxies including those in subgroups are underestimated by ~10% compared to the case of using only galaxies in main groups. This result suggests that the subgroups should be properly considered for mass measurement of galaxy groups based on the velocity dispersion.

  • PDF