• 제목/요약/키워드: Learning Sciences

검색결과 1,999건 처리시간 0.023초

감정 분류를 이용한 표정 연습 보조 인공지능 (Artificial Intelligence for Assistance of Facial Expression Practice Using Emotion Classification)

  • 김동규;이소화;봉재환
    • 한국전자통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1137-1144
    • /
    • 2022
  • 본 연구에서는 감정을 표현하기 위한 표정 연습을 보조하는 인공지능을 개발하였다. 개발한 인공지능은 서술형 문장과 표정 이미지로 구성된 멀티모달 입력을 심층신경망에 사용하고 서술형 문장에서 예측되는 감정과 표정 이미지에서 예측되는 감정 사이의 유사도를 계산하여 출력하였다. 사용자는 서술형 문장으로 주어진 상황에 맞게 표정을 연습하고 인공지능은 서술형 문장과 사용자의 표정 사이의 유사도를 수치로 출력하여 피드백한다. 표정 이미지에서 감정을 예측하기 위해 ResNet34 구조를 사용하였으며 FER2013 공공데이터를 이용해 훈련하였다. 자연어인 서술형 문장에서 감정을 예측하기 위해 KoBERT 모델을 전이학습 하였으며 AIHub의 감정 분류를 위한 대화 음성 데이터 세트를 사용해 훈련하였다. 표정 이미지에서 감정을 예측하는 심층신경망은 65% 정확도를 달성하여 사람 수준의 감정 분류 능력을 보여주었다. 서술형 문장에서 감정을 예측하는 심층신경망은 90% 정확도를 달성하였다. 감정표현에 문제가 없는 일반인이 개발한 인공지능을 이용해 표정 연습 실험을 수행하여 개발한 인공지능의 성능을 검증하였다.

IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법 (IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach)

  • 칸 탈하 애흐마드;아팍 모하메드;기자르 아바쓰;송왕철
    • KNOM Review
    • /
    • 제23권2호
    • /
    • pp.29-41
    • /
    • 2020
  • 네트워크는 빠르게 성장하여 다중 도메인 복잡성을 유발하고 있다. 네트워크 트래픽 및 서비스의 다양성, 다양성 및 동적 특성은 향상된 오케스트레이션 및 관리 접근 방식을 필요로한다. 많은 표준 오케스트레이터와 네트워크 운영자가 E2E 슬라이스 오케스트레이션을 처리하기 위한 복잡성이 증가하고 있다. 또한 액세스, 에지, 전송 및 코어 네트워크를 포함하여 E2E 슬라이스 오케스트레이션과 관련된 여러 도메인이 각각 특정 문제를 가지고 있다. 따라서 멀티 도메인, 멀티 플랫폼 및 멀티 오퍼레이터 기반 네트워킹 환경을 수동으로 처리하려면 특정 전문가가 필요하며 이 접근 방식을 사용하면 런타임에 네트워크의 동적 변경을 처리할 수 없다 또한 이러한 복잡성을 처리하기위한 수동 접근 방식은 항상 오류가 발생하기 쉽고 지루한 일이다. 따라서 본 연구에서는 의도 기반 접근법을 사용하여 E2E 슬라이스 오케스트레이션을 처리하기 위한 자동화되고 추상화된 솔루션을 제안한다. 운영자로부터 도메인을 추상화하고 높은 수준의 의도 형태로 오케스트레이션 의도를 제공 할 수 있다. 또한 조정 된 리소스를 적극적으로 모니터링하고 머신 러닝을 사용하여 현재 모니터링 통계를 기반으로 시스템 상태 업데이트를 위한 향후 리소스 활용도를 예측한다. Closed-loop 자동화 E2E 네트워크 오케스트레이션 및 관리 시스템이 생성된다.

대학교 신입생의 개별성 및 관계성이 대학생활적응에 미치는 영향 (The Effects of Individuality and Relationship of University Freshman on College Life Adaptation)

  • 유용식
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제13권4호
    • /
    • pp.271-281
    • /
    • 2019
  • 본 연구의 목적은 대학교 신입생들의 개별성 및 관계성이 대학생활적응에 미치는 영향을 살펴봄으로써 대학생활의 적응력을 높이기 위한 기초자료를 제공하는 데 있다. 연구대상은 충북 C시에 소재한 대학교에 재학 중인 1학년 신입생 383명을 대상으로 하였으며 영향요인을 살펴보기 위해 다중회귀분석을 실시하였다. 본 연구결과 첫째, 일반적 특성에 따른 차이에서 성별은 남학생들이 개별성이 더 높게 나타났으며, 성격은 외향적 학생들이 관계성이 더 높게 나타났다. 전공계열에서는 인문사회계열 학생들은 관계성이, 자연공학계열 학생들은 개별성이 더 높게 나타났다. 둘째, 대학생의 대학생활적응에 영향을 미치는 하위요인은 개별성에서는 자율성, 관계성에서는 친화성과 친밀성이 유의미한 것으로 나타났다. 특히 자율성이 대학생활적응에 가장 큰 영향을 미치는 것으로 나타났다. 이러한 연구결과를 근거로 정책제언을 하면 첫째, 개별성 및 관계성의 조화와 균형이 필요하다. 둘째, 자신이 스스로 선택할 수 있는 활동 및 학습 환경 조성이 필요하다. 셋째, 학과행사, 동아리활동 등 친화성 및 친밀성 증진을 위한 프로그램 개발이 필요하다. 넷째, 개별성 및 관계성 증진을 위해 면대면 접촉을 통한 정서 심리적 프로그램 지원이 활성화 되어야 할 것이다.

작물의 병충해 분류를 위한 이미지 활용 방법 연구 (Study on Image Use for Plant Disease Classification)

  • 정성호;한정은;정성균;봉재환
    • 한국전자통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.343-350
    • /
    • 2022
  • 서로 다른 특징을 가지는 이미지를 통합하여 작물의 병충해 분류를 위한 심층신경망을 훈련하는 것이 학습 결과에 어떤 영향을 미치는지 확인하고, 심층신경망의 학습 결과를 개선할 수 있는 이미지 통합방법에 대해 실험하였다. 실험을 위해 두 종류의 작물 이미지 공개 데이터가 사용되었다. 하나는 인도의 실제 농장 환경에서 촬영된 작물 이미지이고 다른 하나는 한국의 실험실 환경에서 촬영한 작물 이미지였다. 작물 잎 이미지는 정상인 경우와 4종류의 병충해를 포함하여 5개의 하위 범주로 구성되었다. 심층신경망은 전이학습을 통해 사전 훈련된 VGG16이 특징 추출부에 사용되었고 분류기에는 다층퍼셉트론 구조를 사용하였다. 두 공개 데이터는 세 가지 방법으로 통합되어 심층신경망의 지도학습에 사용되었다. 훈련된 심층신경망은 평가 데이터를 이용해 평가되었다. 실험 결과에 따르면 심층신경망을 실험실 환경에서 촬영한 작물 이미지로 학습한 이후에 실제 농장 환경에서 촬영한 작물 이미지로 재학습하는 경우에 가장 좋은 성능을 보였다. 서로 다른 배경의 두 공공데이터를 혼용하여 사용하면 심층신경망의 학습 결과가 좋지 않았다. 심층신경망의 학습 과정에서 여러 종류의 데이터를 사용하는 방법에 따라 심층신경망의 성능이 달라질 수 있음을 확인하였다.

Untact 상황에서 PBL 교수법을 통한 SW 프로젝트 영어 지도 사례 연구 (A Case Study of SW Project English Teaching through PBL method in an Untact Environment)

  • 이성옥;김민규;이혜수;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.514-517
    • /
    • 2021
  • 본 연구의 목적은 코로나-19로 인한 비대면 상황 가운데 'SW프로젝트 영어'를 PBL 교수법으로 운영한 사례 연구를 통하여 시사점을 도출하는 데에 있다. 교양 영어인 만큼 다양한 학년과 전공 학생들이 수강하였고 개강 직후 학생들의 영어 실력 및 SW 관련성을 판단하고자 설문을 시행하였다. 설문 내용을 바탕으로 학생들의 수강 동기와 코로나-19 상황 가운데 어학 수업을 비대면으로 실시해야 함에 따라 적절한 교육과정 운영, 과제 운영을 구성할 수 있는 학생들의 의견을 수렴하였다. 학생들의 SW 영어 교육에 대한 니즈를 파악 후, SW 관련 영어 실력 배양을 위한 퀴즈와 과제를 구성하였다. 매 과제에 대한 실시간 피드백으로 비대면 녹화콘텐츠 수업임에도 불구하고 1:1 피드백을 통하여 소통하며 학생들의 수업 진행을 점검하였다. 주간 퀴즈를 통한 수업 진도에 따른 학습을 유도하였고 주제와 관련된 과제를 통하여 SW 관련 영어를 학습하도록 하였다. 자신이 모르는 단어를 중심으로 SW 영어 단어장 만들기 및 본인의 목소리로 직접 예제를 녹음하는 과제를 마감까지 충분한 시간을 주어 수행토록 하였다. 과정이 종료되면서 학생들의 성적을 평가한 결과 AI/SW창의융합대학, 경영대학, 문화예술대학, 인문사회대학, 자연과학대학 순으로 학생들의 성적이 평가되었다. 본 연구의 목적은 코로나-19로 인한 비대면 상황 가운데 SW 영어를 PBL(Project-Based Learning : 프로젝트 법)이라는 교수법을 통하여 수업을 운영함으로써 학생들의 SW 영어 성취도를 연구하였다는 점에서 의의가 있다.

  • PDF

문서 이미지 데이터 활용을 위한 지능형 OCR 기술 개발 (Development of Intelligent OCR Technology to Utilize Document Image Data)

  • 김상준;유동희;황소영;김민호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.212-215
    • /
    • 2022
  • 오늘날 소위 디지털 전환시대를 맞아, 많은 부분에서 빅데이터의 구축과 활용에 대한 필요성이 높아졌다. 오늘날에 많은 데이터가 디지털기기, 미디어 친화적으로 생산 및 보관되는 것과 달리, 과거 오랜 기간 데이터의 생산 및 보관은 활자 인쇄도서가 주를 이루었다. 따라서 오랜 기간 축적되어온 방대한 활자 인쇄도서를 빅데이터로써 활용하기 위한 광학 문자 판독(OCR: Optical Character Recognition) 기술의 필요성 역시 빅데이터의 필요성에 맞추어 함께 요구되었다. 본 연구에서는 도서 스캔 이미지의 정보를 각 문서 객체별로 세분화하여 그 구조와 내용을 디지털화하는 시스템을 제안한다. 제안 시스템은 크게 1) 문서객체(표, 수식, 그림, 본문)의 영역정보를 인식. 2)인식된 객체의 영역정보를 각각 표 처리, 수식 처리, 텍스트 처리 모듈로 OCR. 3) OCR로 처리된 문서 정보를 JSON형식으로 종합하여 반환하는 세 단계로 구성된다. 본 연구에서 제안하는 모델은 이러한 단계를 수행함에 있어 오픈소스로 공개된 프로젝트를 활용하되, 본 시스템의 목표에 맞추어 추가적인 학습과 개량을 거쳤다. 본 연구에서 제안한 지능형 OCR 시스템은 문서 이미지 내 4종(표, 수식, 이미지, 텍스트)의 객체인식과 처리에 있어 상용 소프트웨어 수준의 성능을 확인할 수 있었다.

  • PDF

코로나19에 관한 데이터 활용 e-PBL 프로그램이 고등학교 생명과학 동아리 학생의 과학과 핵심역량에 미치는 효과 (Effects of e-PBL Program Using COVID-19 Related Data on Science Core Competence of High School Students in Biology Clubs)

  • 신길우;차희영;박지수
    • 한국과학교육학회지
    • /
    • 제43권6호
    • /
    • pp.583-594
    • /
    • 2023
  • 본 연구는 코로나19 관련 데이터를 활용한 고등학생을 위한 e-PBL 프로그램을 개발하고 개발된 프로그램이 학생들의 과학과 핵심역량에 미치는 영향을 알아보고자 하였다. 이를 위해 학습자와 e-PBL의 특성을 고려한 e-PBL 프로그램과 과학과 핵심역량 분석틀을 개발하여, 일반고 생명과학동아리 학생 26명에게 적용했다. 질문지를 통한 과학과 핵심역량 검사가 수업 전·후로 실시되었고, 수업 중 담화 데이터를 수집하여 분석틀로 분석하였다. 연구 결과, 개발된 프로그램은 다섯가지 과학과 핵심역량 향상에 효과가 있었다. 과학과 핵심역량 설문지 분석 결과에서는 과학적 사고력, 과학적 탐구능력, 과학적 문제해결능력에서만 유의한 영향이 있는 것으로 나타났고, 과학적 의사소통 능력과 과학적 참여 및 평생학습 능력은 질문지에서는 유의미한 결과를 나타내지 않았지만, 담화 분석 결과에서는 유의미한 결과를 나타내었다. 특히, 과학적 의사소통 능력과 과학적 참여 및 평생 학습 능력은 프로그램 단계를 통해 가장 고르게 나타났다. 본 연구를 통해 개발한 코로나19 관련 데이터를 활용한 고등학생용 e-PBL 프로그램은 학생들의 과학과 핵심역량 향상에 효과적임을 확인했으므로 과학교육 현장에서 유용하게 사용될 것으로 기대한다.

초 장단기 통합 태양광 발전량 예측 기법 (Very Short- and Long-Term Prediction Method for Solar Power)

  • 윤문섭;임세령;장한승
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1143-1150
    • /
    • 2023
  • 세계적 기후 위기와 저탄소 정책 이행으로 신재생 에너지에 관한 관심이 높아지고 이와 관련된 산업이 증가하고 있다. 이 중에서 태양 에너지는 고갈되지 않고 오염 물질이나 온실가스를 배출하지 않는 대표적인 친환경 에너지로 주목받고 있으며, 이에 따라 세계적으로 태양광 발전 시설 보급이 증가하고 있다. 하지만 태양광 발전은 지리, 날씨와 같은 환경의 영향을 받기 쉬우므로 안정적인 운영과 효율적인 관리를 위해 정확한 발전량 예측이 중요하다. 하지만 변동성이 큰 태양광 발전을 수학적 통계 기술로 정확한 발전량을 예측하는 것은 불가능하다. 이를 위해서 정확하고 효과적인 예측을 위해 딥러닝 기반의 기술에 관한 연구는 필수적이다. 또한, 기존의 딥러닝을 활용한 예측 방식은 장, 단기적인 예측을 나누어 수행하기 때문에 각각의 예측 결과를 얻기 위한 시간이 길어진다는 단점이 있다. 따라서, 본 연구에서는 시계열 특성을 가진 태양광 발전량 데이터를 사용하여 장단기 통합 예측을 수행하기 위해 순환 신경망의 다대다 구조를 활용한다. 그리고 이를 다양한 딥러닝 모델들에 적용하여 학습을 수행하고 각 모델의 결과를 비교·분석한다.

증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구 (AI-Based Object Recognition Research for Augmented Reality Character Implementation)

  • 이석환;이정금;심현
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1321-1330
    • /
    • 2023
  • 본 연구는 증강현실에서 적용할 캐릭터 생성에서 단일 이미지를 통해 여러 객체에 대한 3D 자세 추정 문제를 연구한다. 기존 top-down 방식에서는 이미지 내의 모든 객체를 먼저 감지하고, 그 후에 각각의 객체를 독립적으로 재구성한다. 문제는 이렇게 재구성된 객체들 사이의 중첩이나 깊이 순서가 불일치 하는 일관성 없는 결과가 발생할 수 있다. 본 연구의 목적은 이러한 문제점을 해결하고, 장면 내의 모든 객체에 대한 일관된 3D 재구성을 제공하는 단일 네트워크를 개발하는 것이다. SMPL 매개변수체를 기반으로 한 인체 모델을 top-down 프레임워크에 통합이 중요한 선택이 되었으며, 이를 통해 거리 필드 기반의 충돌 손실과 깊이 순서를 고려하는 손실 두 가지를 도입하였다. 첫 번째 손실은 재구성된 사람들 사이의 중첩을 방지하며, 두 번째 손실은 가림막 추론과 주석이 달린 인스턴스 분할을 일관되게 렌더링하기 위해 객체들의 깊이 순서를 조정한다. 이러한 방법은 네트워크에 이미지의 명시적인 3D 주석 없이도 깊이 정보를 제공하게 한다. 실험 결과, 기존의 Interpenetration loss 방법은 MuPoTS-3D가 114, PoseTrack이 654에 비해서 본 연구의 방법론인 Lp 손실로 네트워크를 훈련시킬 때 MuPoTS-3D가 34, PoseTrack이 202로 충돌수가 크게 감소하는 것으로 나타났다. 본 연구 방법은 표준 3D 자세벤치마크에서 기존 방법보다 더 나은 성능을 보여주었고, 제안된 손실들은 자연 이미지에서 더욱 일관된 재구성을 실현하게 하였다.

머신러닝 알고리즘을 이용한 포유류 종 풍부도 매핑 구축 연구 (Mapping Mammalian Species Richness Using a Machine Learning Algorithm)

  • 김지영;이동근;김은섭;최지영;전윤호
    • 환경영향평가
    • /
    • 제33권2호
    • /
    • pp.53-63
    • /
    • 2024
  • 생물다양성은 환경영향평가 제도의 목표에 중요한 부문으로, 개발대상지 입지 선정, 주변 환경 파악 및 교란으로 인한 생물종 영향 등에서 활용되고 있다. 환경영향평가 분야에서 새로운 기술과 모델을 활용하여 생물다양성을 보다 정확하게 평가하고 예측하는 방안에 대한 연구가 많이 진행되고 있다. 비록 현장, 문헌조사를 통한 데이터를 바탕으로 종 풍부도 지수를 평가하고 있으나, 현장 데이터는 시·공간적으로 미흡하므로 고해상도의 종 풍부도 매핑을 통한 기초자료를 활용함으로서, 모니터링 실효성 문제 해결이 필요하다. 따라서 본 연구에서는 제4차 전국자연환경조사 데이터와 환경변수를 바탕으로 Random forest 모델을 활용하여 종 분포모형을 개발하였다. 해당 모델은 24종의 포유류 종 분포 매핑 결과를 species richness index를 활용하여 100m 해상도의 종 풍부도 매핑 결과를 도출하였다. 연구 결과, 종 분포모형은 평균 0.82의 AUC값으로 우수한 예측 정확도를 보였다. 또한, 전국자연환경조사 데이터와 비교결과, 고 해상도의 종 풍부도 매핑 결과의 종 풍부도 분포는 정규분포의 형태를 가지고 있어 환경영향평가에서의 기초자료로 사용함에 있어 신뢰성이 높다. 본 연구의 분석결과는 추후 도시개발과 사업을 함에 있어 생물다양성 평가, 서식지 보전 등에 새로운 참고자료로 활용될 수 있을 것으로 사료된다.