• Title/Summary/Keyword: Learning Repository

Search Result 108, Processing Time 0.037 seconds

Centroid and Nearest Neighbor based Class Imbalance Reduction with Relevant Feature Selection using Ant Colony Optimization for Software Defect Prediction

  • B., Kiran Kumar;Gyani, Jayadev;Y., Bhavani;P., Ganesh Reddy;T, Nagasai Anjani Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.1-10
    • /
    • 2022
  • Nowadays software defect prediction (SDP) is most active research going on in software engineering. Early detection of defects lowers the cost of the software and also improves reliability. Machine learning techniques are widely used to create SDP models based on programming measures. The majority of defect prediction models in the literature have problems with class imbalance and high dimensionality. In this paper, we proposed Centroid and Nearest Neighbor based Class Imbalance Reduction (CNNCIR) technique that considers dataset distribution characteristics to generate symmetry between defective and non-defective records in imbalanced datasets. The proposed approach is compared with SMOTE (Synthetic Minority Oversampling Technique). The high-dimensionality problem is addressed using Ant Colony Optimization (ACO) technique by choosing relevant features. We used nine different classifiers to analyze six open-source software defect datasets from the PROMISE repository and seven performance measures are used to evaluate them. The results of the proposed CNNCIR method with ACO based feature selection reveals that it outperforms SMOTE in the majority of cases.

Identification of Mechanical Parameters of Kyeongju Bentonite Based on Artificial Neural Network Technique

  • Kim, Minseop;Lee, Seungrae;Yoon, Seok;Jeon, Min-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.269-278
    • /
    • 2022
  • The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.

UCI Sensor Data Analysis based on Data Visualization (데이터 시각화 기반의 UCI Sensor Data 분석)

  • Chang, Il-Sik;Choi, Hee-jo;Park, Goo-man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.21-24
    • /
    • 2020
  • 대용량의 데이터를 시각적 요소를 활용하여 눈으로 볼 수 있도록 하는 데이터 시각화에 대한 관심이 꾸준히 증가하고 있다. 데이터 시각화는 데이터의 전처리를 거쳐 차원 축소를 하여 데이터의 분포를 시각적으로 확인할 수 있다. 공개된 데이터 셋은 캐글(kaggle), 아마존 AWS 데이터셋(Amazon AWS datasets), UC 얼바인 머신러닝 저장소(UC irvine machine learning repository)등 다양하다. 본 논문에서는 UCI의 화학 가스의 데이터셋을 이용하여 딥러닝을 이용하여 다양한 환경 및 조건에서의 학습을 통한 데이터분석 및 학습 결과가 좋을 경우와 그렇지 않을 경우의 마지막 레이어의 특징 벡터를 시각화하여 직관적인 결과를 확인 가능 하도록 하였다. 또한 다차원 입력 데이터를 시각화 함으로써 시각화 된 결과가 딥러닝의 학습결과와 연관이 있는지를 확인 한다.

  • PDF

The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms (다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구)

  • Kim, Jeonghun;Kim, Min Yong;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • Big data is creating in a wide variety of fields such as medical care, manufacturing, logistics, sales site, SNS, and the dataset characteristics are also diverse. In order to secure the competitiveness of companies, it is necessary to improve decision-making capacity using a classification algorithm. However, most of them do not have sufficient knowledge on what kind of classification algorithm is appropriate for a specific problem area. In other words, determining which classification algorithm is appropriate depending on the characteristics of the dataset was has been a task that required expertise and effort. This is because the relationship between the characteristics of datasets (called meta-features) and the performance of classification algorithms has not been fully understood. Moreover, there has been little research on meta-features reflecting the characteristics of multi-class. Therefore, the purpose of this study is to empirically analyze whether meta-features of multi-class datasets have a significant effect on the performance of classification algorithms. In this study, meta-features of multi-class datasets were identified into two factors, (the data structure and the data complexity,) and seven representative meta-features were selected. Among those, we included the Herfindahl-Hirschman Index (HHI), originally a market concentration measurement index, in the meta-features to replace IR(Imbalanced Ratio). Also, we developed a new index called Reverse ReLU Silhouette Score into the meta-feature set. Among the UCI Machine Learning Repository data, six representative datasets (Balance Scale, PageBlocks, Car Evaluation, User Knowledge-Modeling, Wine Quality(red), Contraceptive Method Choice) were selected. The class of each dataset was classified by using the classification algorithms (KNN, Logistic Regression, Nave Bayes, Random Forest, and SVM) selected in the study. For each dataset, we applied 10-fold cross validation method. 10% to 100% oversampling method is applied for each fold and meta-features of the dataset is measured. The meta-features selected are HHI, Number of Classes, Number of Features, Entropy, Reverse ReLU Silhouette Score, Nonlinearity of Linear Classifier, Hub Score. F1-score was selected as the dependent variable. As a result, the results of this study showed that the six meta-features including Reverse ReLU Silhouette Score and HHI proposed in this study have a significant effect on the classification performance. (1) The meta-features HHI proposed in this study was significant in the classification performance. (2) The number of variables has a significant effect on the classification performance, unlike the number of classes, but it has a positive effect. (3) The number of classes has a negative effect on the performance of classification. (4) Entropy has a significant effect on the performance of classification. (5) The Reverse ReLU Silhouette Score also significantly affects the classification performance at a significant level of 0.01. (6) The nonlinearity of linear classifiers has a significant negative effect on classification performance. In addition, the results of the analysis by the classification algorithms were also consistent. In the regression analysis by classification algorithm, Naïve Bayes algorithm does not have a significant effect on the number of variables unlike other classification algorithms. This study has two theoretical contributions: (1) two new meta-features (HHI, Reverse ReLU Silhouette score) was proved to be significant. (2) The effects of data characteristics on the performance of classification were investigated using meta-features. The practical contribution points (1) can be utilized in the development of classification algorithm recommendation system according to the characteristics of datasets. (2) Many data scientists are often testing by adjusting the parameters of the algorithm to find the optimal algorithm for the situation because the characteristics of the data are different. In this process, excessive waste of resources occurs due to hardware, cost, time, and manpower. This study is expected to be useful for machine learning, data mining researchers, practitioners, and machine learning-based system developers. The composition of this study consists of introduction, related research, research model, experiment, conclusion and discussion.

Open Digital Textbook for Smart Education (스마트교육을 위한 오픈 디지털교과서)

  • Koo, Young-Il;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.177-189
    • /
    • 2013
  • In Smart Education, the roles of digital textbook is very important as face-to-face media to learners. The standardization of digital textbook will promote the industrialization of digital textbook for contents providers and distributers as well as learner and instructors. In this study, the following three objectives-oriented digital textbooks are looking for ways to standardize. (1) digital textbooks should undertake the role of the media for blended learning which supports on-off classes, should be operating on common EPUB viewer without special dedicated viewer, should utilize the existing framework of the e-learning learning contents and learning management. The reason to consider the EPUB as the standard for digital textbooks is that digital textbooks don't need to specify antoher standard for the form of books, and can take advantage od industrial base with EPUB standards-rich content and distribution structure (2) digital textbooks should provide a low-cost open market service that are currently available as the standard open software (3) To provide appropriate learning feedback information to students, digital textbooks should provide a foundation which accumulates and manages all the learning activity information according to standard infrastructure for educational Big Data processing. In this study, the digital textbook in a smart education environment was referred to open digital textbook. The components of open digital textbooks service framework are (1) digital textbook terminals such as smart pad, smart TVs, smart phones, PC, etc., (2) digital textbooks platform to show and perform digital contents on digital textbook terminals, (3) learning contents repository, which exist on the cloud, maintains accredited learning, (4) App Store providing and distributing secondary learning contents and learning tools by learning contents developing companies, and (5) LMS as a learning support/management tool which on-site class teacher use for creating classroom instruction materials. In addition, locating all of the hardware and software implement a smart education service within the cloud must have take advantage of the cloud computing for efficient management and reducing expense. The open digital textbooks of smart education is consdered as providing e-book style interface of LMS to learners. In open digital textbooks, the representation of text, image, audio, video, equations, etc. is basic function. But painting, writing, problem solving, etc are beyond the capabilities of a simple e-book. The Communication of teacher-to-student, learner-to-learnert, tems-to-team is required by using the open digital textbook. To represent student demographics, portfolio information, and class information, the standard used in e-learning is desirable. To process learner tracking information about the activities of the learner for LMS(Learning Management System), open digital textbook must have the recording function and the commnincating function with LMS. DRM is a function for protecting various copyright. Currently DRMs of e-boook are controlled by the corresponding book viewer. If open digital textbook admitt DRM that is used in a variety of different DRM standards of various e-book viewer, the implementation of redundant features can be avoided. Security/privacy functions are required to protect information about the study or instruction from a third party UDL (Universal Design for Learning) is learning support function for those with disabilities have difficulty in learning courses. The open digital textbook, which is based on E-book standard EPUB 3.0, must (1) record the learning activity log information, and (2) communicate with the server to support the learning activity. While the recording function and the communication function, which is not determined on current standards, is implemented as a JavaScript and is utilized in the current EPUB 3.0 viewer, ths strategy of proposing such recording and communication functions as the next generation of e-book standard, or special standard (EPUB 3.0 for education) is needed. Future research in this study will implement open source program with the proposed open digital textbook standard and present a new educational services including Big Data analysis.

Composition and Development of Archival Content Service for Teaching-learning Materials (교수·학습자료용 기록정보 콘텐츠 서비스의 구성 및 개발)

  • Shim, Sungbo
    • The Korean Journal of Archival Studies
    • /
    • no.16
    • /
    • pp.201-256
    • /
    • 2007
  • Nowadays Korean main archives and manuscript repositories are planning to develop archival information service for students and teachers in their web sites. This study is aimed at discovering main issues of developing archival information service for students and teachers and finding a solution. The goal of archival information service for students and teachers is the promotion of use through launching service and the gradual growth of archival management program. The customer group is segmented into the students and teachers who are learning and teaching Korean history in classroom. As a result of analyzing curriculum and educational environment, the archival information must be developed into teaching-learning materials. And the processing archival information into archival content is needed. Consequently the character of archival information service for students and teachers is conceptualized as archival content service for teaching-learning materials. At every step of developing archival content service for teaching-learning materials, the next main points are considered and achieved. First, the strategy of customer-focused service must be the same from beginning to end. Second, the growth of traditional archival management(e.g. classification, description and finding aids) must be contributed. Third, the collaboration system leading by professional education staff must be organized. Fourth, the archival information must be related with teaching-learning activities. Fifth, the quality of content is more important than the quantity of it. Sixth, the networking with another agencies for cooperation must be considered.

Construction of Multiple Classifier Systems based on a Classifiers Pool (인식기 풀 기반의 다수 인식기 시스템 구축방법)

  • Kang, Hee-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.8
    • /
    • pp.595-603
    • /
    • 2002
  • Only a few studies have been conducted on how to select multiple classifiers from the pool of available classifiers for showing the good classification performance. Thus, the selection problem if classifiers on how to select or how many to select still remains an important research issue. In this paper, provided that the number of selected classifiers is constrained in advance, a variety of selection criteria are proposed and applied to tile construction of multiple classifier systems, and then these selection criteria will be evaluated by the performance of the constructed multiple classifier systems. All the possible sets of classifiers are trammed by the selection criteria, and some of these sets are selected as the candidates of multiple classifier systems. The multiple classifier system candidates were evaluated by the experiments recognizing unconstrained handwritten numerals obtained both from Concordia university and UCI machine learning repository. Among the selection criteria, particularly the multiple classifier system candidates by the information-theoretic selection criteria based on conditional entropy showed more promising results than those by the other selection criteria.

Personalized Search Service in Semantic Web (시멘틱 웹 환경에서의 개인화 검색)

  • Kim, Je-Min;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.533-540
    • /
    • 2006
  • The semantic web environment promise semantic search of heterogeneous data from distributed web page. Semantic search would resuit in an overwhelming number of results for users is increased, therefore elevating the need for appropriate personalized ranking schemes. Culture Finder helps semantic web agents obtain personalized culture information. It extracts meta data for each web page(culture news, culture performance, culture exhibition), perform semantic search and compute result ranking point to base user profile. In order to work efficient, Culture Finder uses five major technique: Machine learning technique for generating user profile from user search behavior and meta data repository, an efficient semantic search system for semantic web agent, query analysis for representing query and query result, personalized ranking method to provide suitable search result to user, upper ontology for generating meta data. In this paper, we also present the structure used in the Culture Finder to support personalized search service.

Nonlinear Feature Extraction using Class-augmented Kernel PCA (클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출)

  • Park, Myoung-Soo;Oh, Sang-Rok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.7-12
    • /
    • 2011
  • In this papwer, we propose a new feature extraction method, named as Class-augmented Kernel Principal Component Analysis (CA-KPCA), which can extract nonlinear features for classification. Among the subspace method that was being widely used for feature extraction, Class-augmented Principal Component Analysis (CA-PCA) is a recently one that can extract features for a accurate classification without computational difficulties of other methods such as Linear Discriminant Analysis (LDA). However, the features extracted by CA-PCA is still restricted to be in a linear subspace of the original data space, which limites the use of this method for various problems requiring nonlinear features. To resolve this limitation, we apply a kernel trick to develop a new version of CA-PCA to extract nonlinear features, and evaluate its performance by experiments using data sets in the UCI Machine Learning Repository.

A Study on the Revitalization of University Libraries Using Local Cultural Contents (지역문화콘텐츠를 활용한 대학도서관 활성화 방안 연구)

  • Noh, Younghee;Lee, Seok Hyoung;Shin, Youngji;Kwak, Woo-Jung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.31 no.3
    • /
    • pp.169-189
    • /
    • 2020
  • In this study, as the role and function of university libraries have been expanded to become a base for local information services and local information service centers along with the demands of the times, this study seeks to find ways to revitalize university library services using local cultural contents. I did. As a result, first, university libraries select core cultural contents representing the region or contents related to people from the region as regional cultural contents, receive information from relevant institutions in the region, or directly It must perform social, cultural and educational functions based on culture and art. Second, when planning programs related to local cultural contents, university libraries should proceed in the form of combining local visits, learning, reading, and experiences. Third, university libraries should play a role as a repository of cultural resources and a hub of cultural resources through systematic and stable preservation of cultural resources and widespread service expansion through the establishment of a local cultural resource management system.