• Title/Summary/Keyword: Learning Repository

Search Result 108, Processing Time 0.03 seconds

Cluster Merging Using Density based Fuzzy C-Means algorithm (밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병)

  • 한진우;전성해;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.235-238
    • /
    • 2003
  • Fuzzy C-Means(FCM) 알고리즘은 초기 군집 중심의 개수와 위치에 따라 군집 결과의 성능차이가 많이 나타난다. 하지만 일반적인 경우에 군집 중심의 개수는 분석가의 주관에 의해 결정되고, 임의적으로 결정되기 때문에 원래 데이터의 구조와는 무관하게 수행되어 최적화된 군집화 수행을 실행하지 못하는 경우가 발생하게 된다. 따라서 본 논문에서는 원래의 데이터의 구조에 좀더 근접한 퍼지 군집화를 수행하기 위하여 격자를 바탕으로 한 데이터의 밀도를 이용한 FCM을 제안하고, 이러한 밀도 기반 FCM에 의해 결정된 군집의 합병 기법을 제안하였다. N-차원의 데이터 공간을 N-차원의 격자로 나누고, 초기 군집 중심의 개수와 위치는 각 격자의 밀도를 바탕으로 결정된다. 초기화 이후에 각 격자 내부에서 FCM을 이용하여 군집화를 수행하고, 계속해서 이웃 격자의 군집결과에 대하여 군집간의 유사도 측도를 이용하여 군집 합병을 수행함으로써 데이터의 자연적인 구조에 근접한 군집화를 수행하였다. 제안된 군집화 합병 기법의 향상된 성능은 UCI Machine Learning Repository 데이터를 이용하여 확인하였다.

  • PDF

Diagnosis of Spondylopathy Using Mahalanobis Taguchi System (Mahalanobis Taguchi System을 이용한 척추질환 환자의 진단에 관한 연구)

  • Hong, Jung Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.10-15
    • /
    • 2012
  • The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is diagnosis of the spondylolisthesis from biomedical data that is derived from the shape and orientation of the pelvis and lumbar spine. The data set has six attributes including pelvic incidence, pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius and grade of spondylolisthesis and two class including normal and abnormal. From University of California at Irvine machine learning repository, 100 normal and 150 spondylolisthesis patient's data were used for this study. Mahalanobis Taguchi System (MTS) application process and the diagnosis results were described in this paper.

An Optimal Clustering using Hybrid Self Organizing Map

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.10-14
    • /
    • 2006
  • Many clustering methods have been studied. For the most part of these methods may be needed to determine the number of clusters. But, there are few methods for determining the number of population clusters objectively. It is difficult to determine the cluster size. In general, the number of clusters is decided by subjectively prior knowledge. Because the results of clustering depend on the number of clusters, it must be determined seriously. In this paper, we propose an efficient method for determining the number of clusters using hybrid' self organizing map and new criterion for evaluating the clustering result. In the experiment, we verify our model to compare other clustering methods using the data sets from UCI machine learning repository.

Empirical Comparisons of Clustering Algorithms using Silhouette Information

  • Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • Many clustering algorithms have been used in diverse fields. When we need to group given data set into clusters, many clustering algorithms based on similarity or distance measures are considered. Most clustering works have been based on hierarchical and non-hierarchical clustering algorithms. Generally, for the clustering works, researchers have used clustering algorithms case by case from these algorithms. Also they have to determine proper clustering methods subjectively by their prior knowledge. In this paper, to solve the subjective problem of clustering we make empirical comparisons of popular clustering algorithms which are hierarchical and non hierarchical techniques using Silhouette measure. We use silhouette information to evaluate the clustering results such as the number of clusters and cluster variance. We verify our comparison study by experimental results using data sets from UCI machine learning repository. Therefore we are able to use efficient and objective clustering algorithms.

Diagnosis of Parkinson's Disease by Voice Disorder Using Mahalanobis Taguchi System (Mahalanobis Taguchi System을 이용한 파킨슨병 환자의 음성분석을 통한 진단에 관한 연구)

  • Hong, Jung-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.215-222
    • /
    • 2009
  • Human voice reacts very sensitively to human's minute physical condition. For instance, human voice disorders affect patients profoundly especially in the case of Parkinson's disease. Acoustic tools such as MDVP, can function as an equipment that measures various voice in different objects. Many different approaches have been applied for analyzing the voice disorders for diagnosis of Parkinson's disease. According to the voice data of suspected Parkinson's patients from UCI Machine Learning Repository, it is reported to have 23 people with Parkinson's disease and 8 healthy people. Applying Mahalanobis Taguchi System (MTS) for diagnosis of Parkinson's disease, the correct diagnosis performance is compared to previous research results.

Hybrid Pattern Recognition Using a Combination of Different Features

  • Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.9-16
    • /
    • 2015
  • We propose a hybrid pattern recognition method that effectively combines two different features for improving data classification. We first extract the PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) features, both of which are widely used in pattern recognition, to construct a set of basic features, and then evaluate the separability of each basic feature. According to the results of evaluation, we select only the basic features that contain a large amount of discriminative information for construction of the combined features. The experimental results for the various data sets in the UCI machine learning repository show that using the proposed combined features give better recognition rates than when solely using the PCA or LDA features.

사례기반추론 모델의 최근접 이웃 설정을 위한 Similarity Threshold의 사용

  • Lee, Jae-Sik;Lee, Jin-Cheon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.588-594
    • /
    • 2005
  • 사례기반추론(Case-Based Reasoning)은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접이웃(Nearest Neighbor)을 어떻게 설정하느냐에 따라 영향을 받게 된다. 따라서 최근접 이웃을 결정짓는 k 값의 설정은 성공적인 사례기반추론 시스템을 구축하기 위한 중요 요인 중 하나가 된다. 최근접 이웃의 설정에 있어서 대부분의 선행 연구들은 고정된 k 값을 사용하는 사례기반추론 시스템은 k 값을 크게 설정할 경우 최근접 이웃 안에 주어진 오류를 일으킬 수 있으며, k 값이 작게 설정된 경우에는 유사 사례 중 일부만을 예측에 사용하기 때문에 예측 결과의 왜곡을 초래할 수 있다. 본 이웃을 결정함에 있어서 Similarity Threshold를 이용하는 s-NN 방법을 제안하였다. 본 연구의 실험을 위해 UCI(University of california, Irvine) Machine Learning Repository에서 제공하는 두 개의 신용 데이터 셋을 사용하였으며, 실험 결과 s-NN 적용한 CBR 모델이 고정된 k 값을 적용한 전통적인 CBR 모델보다 더 우수한 성능을 보여주었다.

  • PDF

Light and Shade in the Image of Africa (아프리카 이미지의 명(明)과 암(暗))

  • KIM, Kyung-Rang
    • Cross-Cultural Studies
    • /
    • v.27
    • /
    • pp.145-166
    • /
    • 2012
  • In this Study, the search and analysis for the contents of the mass media, especially, such as newspaper articles, broadcast campaigns, broadcating advertisings, the Internet, etc, are accomplished under the assumption that the cause of the negative and fragmentary images about Africa holds a place in Korea's heart resulting from Korean mass media. Africa was seen as not only the continent of famine and diseases, but also a safari and the Nature's repository. However, these images are only the fragments of information about the African continent. So, we have to understand and recognize the origin of Africa in aspect of its learning and the mythology as well as the truth of the African as modern human origins. Moreover, we have to do our endeavor to have a good perspective about Africa as our future partner somewhat less than the wretched continent that we applaud their effort to the pursuit of stability and the development in terms of their modern cities, economy and politics and we have to aid and send relief cargoes simply.

Creation Methods of Fuzzy Membership Functions Based on Statistical Information for Fuzzy Classifier (퍼지 분류기를 위한 통계적 정보 기반의 퍼지 함수 설정 기법)

  • Shin, Sang-Ho;Han, Soowhan;Woo, Young Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.379-382
    • /
    • 2009
  • 패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 분류기는 퍼지 소속 함수를 적절히 설정함으로써 보다 향상된 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 함수 설정은 인식문제 분야의 특성이나 해당 전문가의 지식과 주관적 경험을 기반으로 설정되므로 설정된 소속도 함수의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 분류기의 소속도 함수를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 소속도 함수 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터 중에 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.

  • PDF

Modeling of an Achievement Evaluation Support System Using Achievement Standards-based Integrated Data Model (성취기준 통합 데이터 모델을 통한 성취평가 지원 시스템 모델링)

  • Chung, Hyunsook;Kim, Jungmin
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.115-125
    • /
    • 2018
  • The one of goals of the 2015 revised national curriculum is the successful application of achievement standards-based assessment, which assesses both the results and process of learning, ensuring that all students have achieved the educational objectives, to schools. Therefore, an achievement standards and evaluation support system is required to manage a whole process of teaching and learning based on achievement standards and provide the personalized assessment feedback to students to improve their achievement levels. In this paper, we perform a design of integrated data model and system of teaching plan, subject content, assessment plan, assessment result, and feedback data is required based on an achievement standards repository. In addition, we create a student's dashboard webpage, which representing different types of achievement of the student, and perform the comparative analysis of data models to evaluate the quality of the proposed model.