• 제목/요약/키워드: Learning Repository

검색결과 108건 처리시간 0.028초

Statistical Profiles of Users' Interactions with Videos in Large Repositories: Mining of Khan Academy Repository

  • Yassine, Sahar;Kadry, Seifedine;Sicilia, Miguel Angel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2101-2121
    • /
    • 2020
  • The rapid growth of instructional videos repositories and their widespread use as a tool to support education have raised the need of studies to assess the quality of those educational resources and their impact on the quality of learning process that depends on them. Khan Academy (KA) repository is one of the prominent educational videos' repositories. It is famous and widely used by different types of learners, students and teachers. To better understand its characteristics and the impact of such repositories on education, we gathered a huge amount of KA data using its API and different web scraping techniques, then we analyzed them. This paper reports the first quantitative and descriptive analysis of Khan Academy repository (KA repository) of open video lessons. First, we described the structure of repository. Then, we demonstrated some analyses highlighting content-based growth and evolution. Those descriptive analyses spotted the main important findings in KA repository. Finally, we focused on users' interactions with video lessons. Those interactions consisted of questions and answers posted on videos. We developed interaction profiles for those videos based on the number of users' interactions. We conducted regression analysis and statistical tests to mine the relation between those profiles and some quality related proposed metrics. The results of analysis showed that all interaction profiles are highly affected by video length and reuse rate in different subjects. We believe that our study demonstrated in this paper provides valuable information in understanding the logic and the learning mechanism inside learning repositories, which can have major impacts on the education field in general, and particularly on the informal learning process and the instructional design process. This study can be considered as one of the first quantitative studies to shed the light on Khan Academy as an open educational resources (OER) repository. The results presented in this paper are crucial in understanding KA videos repository, its characteristics and its impact on education.

Multi-Sensor Signal based Situation Recognition with Bayesian Networks

  • Kim, Jin-Pyung;Jang, Gyu-Jin;Jung, Jae-Young;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1051-1059
    • /
    • 2014
  • In this paper, we propose an intelligent situation recognition model by collecting and analyzing multiple sensor signals. Multiple sensor signals are collected for fixed time window. A training set of collected sensor data for each situation is provided to K2-learning algorithm to generate Bayesian networks representing causal relationship between sensors for the situation. Statistical characteristics of sensor values and topological characteristics of generated graphs are learned for each situation. A neural network is designed to classify the current situation based on the extracted features from collected multiple sensor values. The proposed method is implemented and tested with UCI machine learning repository data.

IoT 온디바이스 AI 실현을 위한 AI 모델 레포지토리 (AI Model Repository for Realizing IoT On-device AI)

  • 이석준;최충재;성낙명
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.597-599
    • /
    • 2022
  • IoT 디바이스에서 on-device AI를 수행할 때, 타겟 서비스나 디바이스의 환경에 따라 필요한 AI 모델이 달라질 수 있다. 또한, 기존 AI 모델도 federated learning과 같이 추가적인 데이터를 이용해 트레이닝을 하거나 보다 향상된 새로운 기법을 사용하는 등 업데이트가 일어날 수 있다. 이에 따라 IoT 디바이스에서 양질의 AI 서비스를 수행하기 위해서는 상황에 따라 필요한 AI 모델을 선택적으로 사용하거나 최적화된 최신 버전의 AI 모델로 업데이트 할 수 있어야 한다. 본 논문에서는 이를 지원하기 위한 AI 모델 레포지토리를 제안한다. 레포지토리는 AI 모델의 등록, 검색, 관리 및 배포를 지원하며 실사용을 위한 웹 포털을 포함한다. 제안하는 시스템의 실효성 확인을 위해 Node.js와 Vue.js로 구현하여 동작을 확인하였다.

  • PDF

UCI machine learning repository 사용한 TCN-Prophet 기반 당뇨병 예측 (Diabetes Prediction with the TCN-Prophet model using UCI Machine Learning Repository)

  • 탄텐보;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.325-327
    • /
    • 2023
  • Diabetes is a common chronic disease that threatens human life and health, and its prevalence remains high because its mechanisms are complex, further its etiology remains unclear. According to the International Diabetes Federation (IDF), there are 463 million cases of diabetes in adults worldwide, and the number is growing. This study aims to explore the potential influencing factors of diabetes by learning data from the UCI diabetes dataset, which is a multivariate time series dataset. In this paper we propose the TCN-prophet model for diabetes. The experimental results show that the prediction of insulin concentration by the TCN-prophet model provides a high degree of consistency, compared to the existing LSTM model.

추천시스템을 위한 복합지식저장소 설계 (Design of Compound Knowledge Repository for Recommendation System)

  • 한정수;김귀정
    • 디지털융복합연구
    • /
    • 제10권11호
    • /
    • pp.427-432
    • /
    • 2012
  • 본 연구는 복합저장소 구축 방법과 복합지식 프로세스 개발을 위한 기술적 방법을 제안하였다. 본 연구에서 제안한 복합지식 저장소에 저장되는 데이터 대상은 복합지식 메타데이터와 디지털 자원 모두를 포함하며, 사용목적에 따라 사용자 역할, 기능적 요소, 서비스 범주로 나눌 수 있다. 이 세 가지 요소는 저장소의 추상적 모델을 설명하는 기본적인 구성요소이다. 본 연구에서는 복합지식의 메타데이터를 2가지 요소로 구분하여 정의하였다. Component는 지식을 사용하고 생성하는 주체나 활동단위, 리소스 자체 등에 대한 속성을 나타내고, Context는 지식객체가 포함되어 있는 맥락을 나타낸다. 복합지식 프로세스 Agent는 복합지식의 분류와 등록, 검색, 패턴 정보 관리 등의 역할을 수행하고 복합지식 저장소와 사용자 사이의 데이터 흐름과 처리를 담당한다. 복합지식 프로세스 Agent는 데이터의 검색과 추출, 분산 환경에서 데이터 교환을 위한 데이터의 수집과 출력, 저장된 데이터의 추가, 변경 등이 발생한 것을 알려주는 경고, 데이터의 저장과 등록, 메타데이터 조회 후 원하는 물리적 자료를 요청하는 요청과 전달 등의 기능으로 구성하였다. 본 연구에서 개발하고자하는 추천시스템을 위한 복합지식저장소 구축은 산업 현장에서 적시에 다양한 콘텐츠를 사용자에게 제시함으로서 일과 학습이 동시에 일어날 수 있도록 하여 시의적절한 지식을 실시간 가시화함으로써 학습 생산성을 증대하는데 도움을 줄 수 있다.

차분진화 기반의 Support Vector Clustering (A Differential Evolution based Support Vector Clustering)

  • 전성해
    • 한국지능시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.679-683
    • /
    • 2007
  • Vapnik의 통계적 학습이론은 분류, 회귀, 그리고 군집화를 위하여 SVM(support vector machine), SVR(support vector regression), 그리고 SVC(support vector clustering)의 3가지 학습 알고리즘을 포함한다. 이들 중에서 SVC는 가우시안 커널함수에 기반한 지지벡터를 이용하여 비교적 우수한 군집화 결과를 제공하고 있다. 하지만 SVM, SVR과 마찬가지로 SVC도 커널모수와 정규화상수에 대한 최적결정이 요구된다 하지만 대부분의 분석작업에서 사용자의 주관적 경험에 의존하거나 격자탐색과 같이 많은 컴퓨팅 시간을 요구하는 전략에 의존하고 있다. 본 논문에서는 SVC에서 사용되는 커널모수와 정규화상수의 효율적인 결정을 위하여 차분진화를 이용한 DESVC(differential evolution based SVC)를 제안한다 UCI Machine Learning repository의 학습데이터와 시뮬레이션 데이터 집합들을 이용한 실험을 통하여 기존의 기계학습 알고리즘과의 성능평가를 수행한다.

e-Learning 콘텐츠의 남북한 표준언어 지원시스템 연구 (A study on Support System for Standard Korean Language of e-Learning Contents)

  • 최성;정지문;유갑상
    • 디지털융복합연구
    • /
    • 제5권2호
    • /
    • pp.25-36
    • /
    • 2007
  • In this paper, we studied on the effective structure of an e-Learning Korean Support System for foreigner based on computer systems which is to obey the rules of IMS/AICC International Standard regulations based on LCMS and SCORM. The most important task on this study is to support the function of self-study module through the review of the analysis and results of Korean learning and learning customs. We studied the effective PMS detail modules as well as the Standard Competency Module Management System, which related to LMS/LCMS, Learning an Individual Competency Management System, Competency Registry/Repository System, Knowledge Management System based on Community Competency Module, Education e-survey System and Module learning Support Service System. We suggested one of standard Effective Model of learning Korean Support System which is adopted in a various techniques for foreigner.

  • PDF

A Co-Evolutionary Computing for Statistical Learning Theory

  • Jun Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.281-285
    • /
    • 2005
  • Learning and evolving are two basics for data mining. As compared with classical learning theory based on objective function with minimizing training errors, the recently evolutionary computing has had an efficient approach for constructing optimal model without the minimizing training errors. The global search of evolutionary computing in solution space can settle the local optima problems of learning models. In this research, combining co-evolving algorithm into statistical learning theory, we propose an co-evolutionary computing for statistical learning theory for overcoming local optima problems of statistical learning theory. We apply proposed model to classification and prediction problems of the learning. In the experimental results, we verify the improved performance of our model using the data sets from UCI machine learning repository and KDD Cup 2000.

지역 기반 분류기의 앙상블 학습 (Ensemble Learning of Region Based Classifiers)

  • 최성하;이병우;양지훈
    • 정보처리학회논문지B
    • /
    • 제14B권4호
    • /
    • pp.303-310
    • /
    • 2007
  • 기계학습에서 분류기틀의 집합으로 구성된 앙상블 분류기는 단일 분류기에 비해 정확도가 높다는 것이 입증되어왔다. 본 논문에서는 새로운 앙상블 학습으로서 데이터의 지역 기반 분류기들의 앙상블 학습을 제시하여 기존의 앙상블 학습과의 비교를 통해 성능을 검증하고자 한다. 지역 기반 분류기의 앙상블 학습은 데이터의 분포가 지역에 따라 다르다는 점에 착안하여 학습 데이터를 분할하여 해당하는 지역에 기반을 둔 분류기들을 만들어 나간다. 이렇게 만들어진 분류기들로부터 지역에 따라 가중치를 둔 투표를 적용하여 앙상블 방법을 이끌어낸다. 본 논문에서 제시한 앙상블 분류기의 성능평가를 위해 단일 분류기와 기존의 앙상블 분류기인 배깅과 부스팅 등을 UCI Machine Learning Repository에 있는 11개의 데이터 셋으로 정확도 비교를 하였다. 그 결과 새로운 앙상블 방법이 기본 분류기로 나이브 베이즈와 SVM을 사용했을 때 다른 방법보다 좋은 성능을 보이는 것을 알 수 있었다.

금융기관의 지식 관리 개선 방안 연구 - 토픽맵 개념을 활용한 학습, 지식 및 정보 객체를 연결시키는 통합 리포지토리 설계를 중심으로 - (Investigating the Promotion Methods of Korean Financial Firms' Knowledge Management in the e-Learning Environment Focusing on the Implementation of TopicMap-Based Repository Model)

  • 김현희
    • 한국문헌정보학회지
    • /
    • 제40권2호
    • /
    • pp.103-123
    • /
    • 2006
  • 금융기관의 지식경영 초기 단계 이후부터는 지속적인 지식 창출과 효율적인 지식 검색이 지식경영의 핵심 요인으로 보고, 지식 창출의 한 방안으로 e-러닝을 제시하고, 효율적인 지식 검색 체제를 구축하기 위해서 리포지토리에 저장된 학습객체, 지식객체, 자료실 정보객체를 유사성에 따라 분류하고 상호 연관관계를 맺음으로써 키워드 검색은 물론 분류 검색과 연관 검색을 가능하게 하는 토픽맵 개념에 기반을 둔 지식맵을 활용한 통합 리포지토리 모형을 제안해 보았다. 모형 구현을 위해서 사용된 연구 방법에는 지식 관리 현황을 파악하기 위해서 세 보험회사들을 대상으로 사례 연구를 실시하였고, 기존의 토픽맵 기반의 실험적인 정보시스템들도 분석, 참조하였다. 디렉토리 형식의 전통적인 지식맵은 관련된 지식을 연계시키기가 어려워 지식관리시스템의 효율적인 브라우징이나 검색에 걸림돌로 작용하고 있는데 본 연구에서 제안된 모형은 이러한 문제점들을 개선할 하나의 안으로 이용될 수 있을 것이다.