• Title/Summary/Keyword: Learning Repository

Search Result 108, Processing Time 0.027 seconds

Statistical Profiles of Users' Interactions with Videos in Large Repositories: Mining of Khan Academy Repository

  • Yassine, Sahar;Kadry, Seifedine;Sicilia, Miguel Angel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2101-2121
    • /
    • 2020
  • The rapid growth of instructional videos repositories and their widespread use as a tool to support education have raised the need of studies to assess the quality of those educational resources and their impact on the quality of learning process that depends on them. Khan Academy (KA) repository is one of the prominent educational videos' repositories. It is famous and widely used by different types of learners, students and teachers. To better understand its characteristics and the impact of such repositories on education, we gathered a huge amount of KA data using its API and different web scraping techniques, then we analyzed them. This paper reports the first quantitative and descriptive analysis of Khan Academy repository (KA repository) of open video lessons. First, we described the structure of repository. Then, we demonstrated some analyses highlighting content-based growth and evolution. Those descriptive analyses spotted the main important findings in KA repository. Finally, we focused on users' interactions with video lessons. Those interactions consisted of questions and answers posted on videos. We developed interaction profiles for those videos based on the number of users' interactions. We conducted regression analysis and statistical tests to mine the relation between those profiles and some quality related proposed metrics. The results of analysis showed that all interaction profiles are highly affected by video length and reuse rate in different subjects. We believe that our study demonstrated in this paper provides valuable information in understanding the logic and the learning mechanism inside learning repositories, which can have major impacts on the education field in general, and particularly on the informal learning process and the instructional design process. This study can be considered as one of the first quantitative studies to shed the light on Khan Academy as an open educational resources (OER) repository. The results presented in this paper are crucial in understanding KA videos repository, its characteristics and its impact on education.

Multi-Sensor Signal based Situation Recognition with Bayesian Networks

  • Kim, Jin-Pyung;Jang, Gyu-Jin;Jung, Jae-Young;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1051-1059
    • /
    • 2014
  • In this paper, we propose an intelligent situation recognition model by collecting and analyzing multiple sensor signals. Multiple sensor signals are collected for fixed time window. A training set of collected sensor data for each situation is provided to K2-learning algorithm to generate Bayesian networks representing causal relationship between sensors for the situation. Statistical characteristics of sensor values and topological characteristics of generated graphs are learned for each situation. A neural network is designed to classify the current situation based on the extracted features from collected multiple sensor values. The proposed method is implemented and tested with UCI machine learning repository data.

AI Model Repository for Realizing IoT On-device AI (IoT 온디바이스 AI 실현을 위한 AI 모델 레포지토리)

  • Lee, Seokjun;Choe, Chungjae;Sung, Nakmyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.597-599
    • /
    • 2022
  • When IoT device performs on-device AI, the device is required to use various AI models selectively according to target service and surrounding environment. Also, AI model can be updated by additional training such as federated learning or adapting the improved technique. Hence, for successful on-device AI, IoT device should acquire various AI models selectively or update previous AI model to new one. In this paper, we propose AI model repository to tackle this issue. The repository supports AI model registration, searching, management, and deployment along with dashboard for practical usage. We implemented it using Node.js and Vue.js to verify it works well.

  • PDF

Diabetes Prediction with the TCN-Prophet model using UCI Machine Learning Repository (UCI machine learning repository 사용한 TCN-Prophet 기반 당뇨병 예측 )

  • Tan Tianbo;Inwhee Joe
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.325-327
    • /
    • 2023
  • Diabetes is a common chronic disease that threatens human life and health, and its prevalence remains high because its mechanisms are complex, further its etiology remains unclear. According to the International Diabetes Federation (IDF), there are 463 million cases of diabetes in adults worldwide, and the number is growing. This study aims to explore the potential influencing factors of diabetes by learning data from the UCI diabetes dataset, which is a multivariate time series dataset. In this paper we propose the TCN-prophet model for diabetes. The experimental results show that the prediction of insulin concentration by the TCN-prophet model provides a high degree of consistency, compared to the existing LSTM model.

Design of Compound Knowledge Repository for Recommendation System (추천시스템을 위한 복합지식저장소 설계)

  • Han, Jung-Soo;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.427-432
    • /
    • 2012
  • The article herein suggested a compound repository and a descriptive method to develop a compound knowledge process. A data target saved in a compound knowledge repository suggested in this article includes all compound knowledge meta data and digital resources, which can be divided into the three following factors according to the purpose: user roles, functional elements, and service ranges. The three factors are basic components to describe abstract models of repository. In this article, meta data of compound knowledge are defined by being classified into the two factors. A component stands for the property about a main agent, activity unit or resource that use and create knowledge, and a context presents the context in which knowledge object are included. An agent of the compound knowledge process performs classification, registration, and pattern information management of composite knowledge, and serves as data flow and processing between compound knowledge repository and user. The agent of the compound knowledge process consists of the following functions: warning to inform data search and extraction, data collection and output for data exchange in an distributed environment, storage and registration for data, request and transmission to call for physical material wanted after search of meta data. In this article, the construction of a compound knowledge repository for recommendation system to be developed can serve a role to enhance learning productivity through real-time visualization of timely knowledge by presenting well-put various contents to users in the field of industry to occur work and learning at the same time.

A Differential Evolution based Support Vector Clustering (차분진화 기반의 Support Vector Clustering)

  • Jun, Sung-Hae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.679-683
    • /
    • 2007
  • Statistical learning theory by Vapnik consists of support vector machine(SVM), support vector regression(SVR), and support vector clustering(SVC) for classification, regression, and clustering respectively. In this algorithms, SVC is good clustering algorithm using support vectors based on Gaussian kernel function. But, similar to SVM and SVR, SVC needs to determine kernel parameters and regularization constant optimally. In general, the parameters have been determined by the arts of researchers and grid search which is demanded computing time heavily. In this paper, we propose a differential evolution based SVC(DESVC) which combines differential evolution into SVC for efficient selection of kernel parameters and regularization constant. To verify improved performance of our DESVC, we make experiments using the data sets from UCI machine learning repository and simulation.

A study on Support System for Standard Korean Language of e-Learning Contents (e-Learning 콘텐츠의 남북한 표준언어 지원시스템 연구)

  • Choi, Sung;Chung, Ji-Moon;Yoo, Gab-Sang
    • Journal of Digital Convergence
    • /
    • v.5 no.2
    • /
    • pp.25-36
    • /
    • 2007
  • In this paper, we studied on the effective structure of an e-Learning Korean Support System for foreigner based on computer systems which is to obey the rules of IMS/AICC International Standard regulations based on LCMS and SCORM. The most important task on this study is to support the function of self-study module through the review of the analysis and results of Korean learning and learning customs. We studied the effective PMS detail modules as well as the Standard Competency Module Management System, which related to LMS/LCMS, Learning an Individual Competency Management System, Competency Registry/Repository System, Knowledge Management System based on Community Competency Module, Education e-survey System and Module learning Support Service System. We suggested one of standard Effective Model of learning Korean Support System which is adopted in a various techniques for foreigner.

  • PDF

A Co-Evolutionary Computing for Statistical Learning Theory

  • Jun Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.281-285
    • /
    • 2005
  • Learning and evolving are two basics for data mining. As compared with classical learning theory based on objective function with minimizing training errors, the recently evolutionary computing has had an efficient approach for constructing optimal model without the minimizing training errors. The global search of evolutionary computing in solution space can settle the local optima problems of learning models. In this research, combining co-evolving algorithm into statistical learning theory, we propose an co-evolutionary computing for statistical learning theory for overcoming local optima problems of statistical learning theory. We apply proposed model to classification and prediction problems of the learning. In the experimental results, we verify the improved performance of our model using the data sets from UCI machine learning repository and KDD Cup 2000.

Ensemble Learning of Region Based Classifiers (지역 기반 분류기의 앙상블 학습)

  • Choi, Sung-Ha;Lee, Byung-Woo;Yang, Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.303-310
    • /
    • 2007
  • In machine learning, the ensemble classifier that is a set of classifiers have been introduced for higher accuracy than individual classifiers. We propose a new ensemble learning method that employs a set of region based classifiers. To show the performance of the proposed method. we compared its performance with that of bagging and boosting, which ard existing ensemble methods. Since the distribution of data can be different in different regions in the feature space, we split the data and generate classifiers based on each region and apply a weighted voting among the classifiers. We used 11 data sets from the UCI Machine Learning Repository to compare the performance of our new ensemble method with that of individual classifiers as well as existing ensemble methods such as bagging and boosting. As a result, we found that our method produced improved performance, particularly when the base learner is Naive Bayes or SVM.

Investigating the Promotion Methods of Korean Financial Firms' Knowledge Management in the e-Learning Environment Focusing on the Implementation of TopicMap-Based Repository Model (금융기관의 지식 관리 개선 방안 연구 - 토픽맵 개념을 활용한 학습, 지식 및 정보 객체를 연결시키는 통합 리포지토리 설계를 중심으로 -)

  • Kim Hyun-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.2
    • /
    • pp.103-123
    • /
    • 2006
  • Assuming that the knowledge creation and retrieval functions could be the most important factors for a successful knowledge management(KM) especially during the promotion stage of KM, this study suggests an e-learning application as one of best methods for producing knowledge and also the integrated knowledge repository model in which learning, knowledge. and information objects can be semantically associated through topic map-based knowledge map. The traditional KM system provides a simple directory-based knowledge map. which can not provide the semantic links between topics or objects. The proposed model can be utilized as a solution to solve the above-mentioned disadvantages of the traditional models. In order to collect the basic data for the proposed model, first, case studies utilizing interviews and surveys were conducted targeting at three Korean insurance companies' knowledge managers(or e-learning managers) and librarians. Second, the related studies and other topic map-based pilot systems were investigated.