• Title/Summary/Keyword: Learning Parameter

Search Result 681, Processing Time 0.022 seconds

Robust Parameter Design via Taguchi's Approach and Neural Network

  • Tsai, Jeh-Hsin;Lu, Iuan-Yuan
    • International Journal of Quality Innovation
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • The parameter design is the most emphasized measure by researchers for a new products development. It is critical for makers to achieve simultaneously in both the time-to-market production and the quality enhancement. However, there are difficulties in practical application, such as (1) complexity and nonlinear relationships co-existed among the system's inputs, outputs and control parameters, (2) interactions occurred among parameters, (3) where the adjustment factors of Taguchi's two-phase optimization procedure cannot be sure to exist in practice, and (4) for some reasons, the data became lost or were never available. For these incomplete data, the Taguchi methods cannot treat them well. Neural networks have a learning capability of fault tolerance and model free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful fields include diagnostics, robotics, scheduling, decision-making, prediction, etc. This research is a case study of spherical annealing model. In the beginning, an original model is used to pre-fix a model of parameter design. Then neural networks are introduced to achieve another model. Study results showed both of them could perform the highest spherical level of quality.

Implementation of Passive Telemetry RF Sensor System Using Unscented Kalman Filter Algorithm (Unscented Kalman Filter를 이용한 원격 RF 센서 시스템 구현)

  • Kim, Kyung-Yup;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1861-1868
    • /
    • 2008
  • In this paper, Passive Telemerty RF Sensor System using Unscented Kalman Filter algorithm(UKF) is proposed. General Passive Telemerty RF Sensor System means that it should be "wireless", "implantable" and "batterless". Conventional Passive Telemerty RF Sensor System adopts Integrated Circuit type, but there are defects like complexity of structure and limit of large power consumption in some cases. In order to overcome these kinds of faults, Passive Telemetry RF Sensor System based on inductive coupling principle is proposed in this paper. Because passive components R, L, C have stray parameters in the range of high frequency such as about 200[KHz] used in this paper, Passive Telemetry RF Sensor System considering stray parameters has to be derived for accurate model identification. Proposed Passive Telemetry RF Sensor System is simple because it consists of R, L and C and measures the change of environment like pressure and humidity in the type of capacitive value. This system adopted UKF algorithm for estimation of this capacitive parameter included in nonlinear system like Passive Telemetry RF Sensor System. For the purpose of obtaining learning data pairs for UKF Algorithm, Phase Difference Detector and Amplitude Detector are proposed respectively which make it possible to get amplitude and phase between input and output voltage. Finally, it is verified that capacitive parameter of proposed Passive Telemetry RF Sensor System using UKF algorithm can be estimated in noisy environment efficiently.

A Comparative Study between the Parameter-Optimized Pacejka Model and Artificial Neural Network Model for Tire Force Estimation (타이어 힘 추정을 위한 파라미터 최적화 파제카 모델과 인공 신경망 모델 간의 비교 연구)

  • Cha, Hyunsoo;Kim, Jayu;Yi, Kyongsu;Park, Jaeyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.33-38
    • /
    • 2021
  • This paper presents a comparative study between the parameter-optimized Pacejka model and artificial neural network model for the tire force estimation. The two different approaches are investigated and compared in this study. First, offline optimization is conducted based on Pacejka Magic Formula model to determine the proper parameter set for the minimization of tire force error between the model and test data set. Second, deep neural network model is used to fit the model to the tire test data set. The actual tire forces are measured using MTS Flat-Track test platform and the measurements are used as the reference tire data set. The focus of this study is on the applicability of machine learning technique to tire force estimation. It is shown via the regression results that the deep neural network model is more effective in describing the tire force than the parameter-optimized Pacejka model.

The Effect of University Students' Grit on Learning Satisfaction: The Mediating Effect of Family Strength (온라인 학습환경에서 대학생의 그릿이 학습만족도에 미치는 영향: 가족건강성의 매개효과)

  • Ryu, Hyunsook;Kim, Jiyoung
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.31-37
    • /
    • 2022
  • The purpose of this study was to identify the effects of family strength as a parameter on the relationship between grit, and learning satisfaction of university students. The grit scale, family strength scale and learning satisfaction scale were applied to data from surveys conducted on 194 students recruited from a university in G gun, C province. This study examined the mediating effects of family strength in relation to grit and learning satisfaction using the hierarchical regression analysis. Results showed that family strength had partial mediating effects in the between grit and learning satisfaction. Therefore, it seems that grit directly and indirectly affect learning satisfaction through family strength. This result indicates that the importance of family strength for learning satisfaction and suggest that family strength should be included in developing learning satisfaction improvement programs.

Estrus Detection in Sows Based on Texture Analysis of Pudendal Images and Neural Network Analysis

  • Seo, Kwang-Wook;Min, Byung-Ro;Kim, Dong-Woo;Fwa, Yoon-Il;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Worldwide trends in animal welfare have resulted in an increased interest in individual management of sows housed in groups within hog barns. Estrus detection has been shown to be one of the greatest determinants of sow productivity. Purpose: We conducted this study to develop a method that can automatically detect the estrus state of a sow by selecting optimal texture parameters from images of a sow's pudendum and by optimizing the number of neurons in the hidden layer of an artificial neural network. Methods: Texture parameters were analyzed according to changes in a sow's pudendum in estrus such as mucus secretion and expansion. Of the texture parameters, eight gray level co-occurrence matrix (GLCM) parameters were used for image analysis. The image states were classified into ten grades for each GLCM parameter, and an artificial neural network was formed using the values for each grade as inputs to discriminate the estrus state of sows. The number of hidden layer neurons in the artificial neural network is an important parameter in neural network design. Therefore, we determined the optimal number of hidden layer units using a trial and error method while increasing the number of neurons. Results: Fifteen hidden layers were determined to be optimal for use in the artificial neural network designed in this study. Thirty images of 10 sows were used for learning, and then 30 different images of 10 sows were used for verification. Conclusions: For learning, the back propagation neural network (BPN) algorithm was used to successful estimate six texture parameters (homogeneity, angular second moment, energy, maximum probability, entropy, and GLCM correlation). Based on the verification results, homogeneity was determined to be the most important texture parameter, and resulted in an estrus detection rate of 70%.

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

Swarm Control of Distributed Autonomous Robot System based on Artificial Immune System using PSO (PSO를 이용한 인공면역계 기반 자율분산로봇시스템의 군 제어)

  • Kim, Jun-Yeup;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.465-470
    • /
    • 2012
  • This paper proposes a distributed autonomous control method of swarm robot behavior strategy based on artificial immune system and an optimization strategy for artificial immune system. The behavior strategies of swarm robot in the system are depend on the task distribution in environment and we have to consider the dynamics of the system environment. In this paper, the behavior strategies divided into dispersion and aggregation. For applying to artificial immune system, an individual of swarm is regarded as a B-cell, each task distribution in environment as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows: When the environmental condition changes, the agent selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other agent using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. In order to decide more accurately select the behavior strategy, the optimized parameter learning procedure that is represented by stimulus function of antigen to antibody in artificial immune system is required. In this paper, particle swarm optimization algorithm is applied to this learning procedure. The proposed method shows more adaptive and robustness results than the existing system at the viewpoint that the swarm robots learning and adaptation degree associated with the changing of tasks.

A Case of Establishing Robo-advisor Strategy through Parameter Optimization (금융 지표와 파라미터 최적화를 통한 로보어드바이저 전략 도출 사례)

  • Kang, Mincheal;Lim, Gyoo Gun
    • Journal of Information Technology Services
    • /
    • v.19 no.2
    • /
    • pp.109-124
    • /
    • 2020
  • Facing the 4th Industrial Revolution era, researches on artificial intelligence have become active and attempts have been made to apply machine learning in various fields. In the field of finance, Robo Advisor service, which analyze the market, make investment decisions and allocate assets instead of people, are rapidly expanding. The stock price prediction using the machine learning that has been carried out to date is mainly based on the prediction of the market index such as KOSPI, and utilizes technical data that is fundamental index or price derivative index using financial statement. However, most researches have proceeded without any explicit verification of the prediction rate of the learning data. In this study, we conducted an experiment to determine the degree of market prediction ability of basic indicators, technical indicators, and system risk indicators (AR) used in stock price prediction. First, we set the core parameters for each financial indicator and define the objective function reflecting the return and volatility. Then, an experiment was performed to extract the sample from the distribution of each parameter by the Markov chain Monte Carlo (MCMC) method and to find the optimum value to maximize the objective function. Since Robo Advisor is a commodity that trades financial instruments such as stocks and funds, it can not be utilized only by forecasting the market index. The sample for this experiment is data of 17 years of 1,500 stocks that have been listed in Korea for more than 5 years after listing. As a result of the experiment, it was possible to establish a meaningful trading strategy that exceeds the market return. This study can be utilized as a basis for the development of Robo Advisor products in that it includes a large proportion of listed stocks in Korea, rather than an experiment on a single index, and verifies market predictability of various financial indicators.

Automatic Classification of Radar Signals Using CNN (CNN을 이용한 레이다 신호 자동 분류)

  • Hong, Seok-Jun;Yi, Yearn-Gui;Jo, Jeil;Lee, Sang-Gil;Seo, Bo-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.132-140
    • /
    • 2019
  • In this paper, we propose a classification method for radar signals depending on the type of threat by applying machine learning to parameter data of radar signals. Currently, the army uses a library of mapping relations between the parameters and the types of threat to recognize threat signals. This approach has certain limitations when classifying signals and recognizing new types of threat or types of threat that do not exist in the current libraries. In this paper, we propose an automatic radar signal classification method depending on the type of threat that uses only parameter data without a library. A convolutional neural network is used as the classifier and machine learning is applied to train the classifier. The proposed method does not use a library, and hence, can classify threat signals that are new or do not exist in the current library.

A Study on Defect Prediction through Real-time Monitoring of Die-Casting Process Equipment (주조공정 설비에 대한 실시간 모니터링을 통한 불량예측에 대한 연구)

  • Chulsoon Park;Heungseob Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.157-166
    • /
    • 2022
  • In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.