• Title/Summary/Keyword: Learning Parameter

Search Result 681, Processing Time 0.023 seconds

A Study on Prediction of Optimized Penetration Using the Neural Network and Empirical models (신경회로망과 수학적 방정식을 이용한 최적의 용입깊이 예측에 관한 연구)

  • 전광석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.70-75
    • /
    • 1999
  • Adaptive control in the robotic GMA(Gas Metal Arc) welding is employed to monitor the information about weld characteristics and process paramters as well as modification of those parameters to hold weld quality within the acceptable limits. Typical characteristics are the bead geometry composition micrrostructure appearance and process parameters which govern the quality of the final weld. The main objectives of this paper are to realize the mapping characteristicso f penetration through the learning. After learning the neural network can predict the pene-traition desired from the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) were chosen from an error analysis. partial-penetration single-pass bead-on-plate welds were fabricated in 12mm mild steel plates in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the penetration with reasonable accuracy and gurarantee the uniform weld quality.

  • PDF

An Adaptive Vendor Managed Inventory Model Using Action-Reward Learning Method (행동-보상 학습 기법을 이용한 적응형 VMI 모형)

  • Kim Chang-Ouk;Baek Jun-Geol;Choi Jin-Sung;Kwon Ick-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.27-40
    • /
    • 2006
  • Today's customer demands in supply chains tend to change quickly, variously even in a short time Interval. The uncertainties of customer demands make it difficult for supply chains to achieve efficient inventory replenishment, resulting in loosing sales opportunity or keeping excessive chain wide inventories. Un this paper, we propose an adaptive vendor managed inventory (VMI) model for a two-echelon supply chain with non-stationary customer demands using the action-reward learning method. The Purpose of this model is to decrease the inventory cost adaptively. The control Parameter, a compensation factor, is designed to adaptively change as customer demand pattern changes. A simulation-based experiment was performed to compare the performance of the adaptive VMI model.

A Self-Designing Method of Behaviors in Behavior-Based Robotics (행위 기반 로봇에서의 행위의 자동 설계 기법)

  • Yun, Do-Yeong;O, Sang-Rok;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.607-612
    • /
    • 2002
  • An automatic design method of behaviors in behavior-based robotics is proposed. With this method, a robot can design its behaviors by itself without aids of human designer. Automating design procedure of behaviors can make the human designer free from somewhat tedious endeavor that requires to predict all possible situations in which the robot will work and to design a suitable behavior for each situation. A simple reinforcement learning strategy is the main frame of this method and the key parameter of the learning process is significant change of reward value. A successful application to mobile robot navigation is reported too.

Input Signal Estimation About Controller Using Neural Networks (신경망을 이용한 제어기에 인가된 입력 신호의 추정)

  • Son Jun-Hyeok;Seo Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.495-497
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.

Evaluation System of Psychological Feelings for Corporate Identity Symbol Marks Using Fuzzy Neural Networks (퍼지 - 뉴럴네트워크를 이용한 CI 심벌마크의 감성평가시스템)

  • Chang, In-Seong;Park, Yong-Ju
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.305-314
    • /
    • 2001
  • In this paper, we construct an automatic evaluation system of psychological feeling for corporate identity (CI) symbol mark based on a fuzzy neural network technique. The system is modelled by trainable fuzzy inference rules with several input variables (qualitative and quantitative design components of CI symbol mark) and a single output variable (consumer's feeling). The back propagation learning algorithm, which is a conventional learning method of multilayer feedforward neural networks, is used for parameter identification of the fuzzy inference system. The learning ability to train data and the generalization ability to test data are evaluated for the proposed evaluation system by computer simulations.

  • PDF

Input signal estimation about controller using neural networks (신경망을 이용한 제어기에 인가된 입력 신호의 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.18-20
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.

  • PDF

Implementation of an adaptive learning control algorithm for robot manipulators (로못 머니퓰레이터를 위한 적응학습제어 알고리즘의 구현)

  • 이형기;최한호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.632-637
    • /
    • 1992
  • Recently many dynamics control algorithms using robot dynamic equation have been proposed. One of them, Kawato's feedback error learning scheme requires neither an accurate model nor parameter estimation and makes the robot motion closer to the desired trajectory by repeating operation. In this paper, the feedback error learning algorithm is implemented to control a robot system, 5 DOF revolute type movemaster. For this purpose, an actuator dynamic model is constructed considering equivalent robot dynamics model with respect to actuator as well as friction model. The command input acquired from the actuator dynamic model is the sum of products of unknown parameters and known functions. To compute the control algorithm, a parallel processing computer, transputer, is used and real-time computing is achieved. The experiment is done for the three major link of movemaster and its result is presented.

  • PDF

A Second-Order Iterative Learning Algorithm with Feedback Applicable to Nonlinear Systems (비선형 시스템에 적용가능한 피드백 사용형 2차 반복 학습제어 알고리즘)

  • 허경무;우광준
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.608-615
    • /
    • 1998
  • In this paper a second-order iterative learning control algorithm with feedback is proposed for the trajectory-tracking control of nonlinear dynamic systems with unidentified parameters. In contrast to other known methods, the proposed teaming control scheme utilize more than one past error history contained in the trajectories generated at prior iterations, and a feedback term is added in the learning control scheme for the enhancement of convergence speed and robustness to disturbances or system parameter variations. The convergence proof of the proposed algorithm is given in detail, and the sufficient condition for the convergence of the algorithm is provided. We also discuss the convergence performance of the algorithm when the initial condition at the beginning of each iteration differs from the previous value of the initial condition. The effectiveness of the proposed algorithm is shown by computer simulation result. It is shown that, by adding a feedback term in teaming control algorithm, convergence speed, robustness to disturbances and robustness to unmatched initial conditions can be improved.

  • PDF

The Recognition of Unvoiced Consonants Using Characteristic Parameters of the Phonemes (음소 특정 파라미터를 이용한 무성자음 인식)

  • 허만택;이종혁;남기곤;윤태훈;김재창;이양성
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.175-182
    • /
    • 1994
  • In this study, we present unvoiced consonant recognition system using characteristic parameters of the phoneme of the each syllable. For the recognition, the characteristic parameters on the time domain such as ZCR, total energy of the consonant region and half region energy of the consonant region, and those on the frequency domain such as the frequency spectrum of the transition region are used. The objective unvoiced consonants in this study are /ㄱ/,/ㄷ/,/ㅂ/,/ㅈ/,/ㅋ/,/ㅌ/,/ㅍ/ and /ㅊ/. Each characteristic parameter of two regions extracted from these segmented unvoiced consonants are used for each recognition system of the region, independently, And complementing two outputs of each other system, the final output is to be produced. The recognition system is implemented using MLP which has learning ability. The recognition simulation results for 112 unvoiced consonant samples are that average recognition rates are 96.4$\%$ under 80$\%$ learning rates and 93.7$\%$ under 60$\%$ learning rates.

  • PDF

A study on fatigue crack growth modelling by back propagation neural networks (역전파 신경회로망을 이용한 피로 균열성장 모델링에 관한 연구)

  • 주원식;조석수
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.65-74
    • /
    • 1996
  • Up to now, the existing crack growth modelling has used a mathematical approximation but an assumed function have a great influence on this method. Especially, crack growth behavior that shows very strong nonlinearity needed complicated function which has difficulty in setting parameter of it. The main characteristics of neural network modelling to engineering field are simple calculations and absence of assumed function. In this paper, after discussing learning and generalization of neural networks, we performed crack growth modelling on the basis of above learning algorithms. J'-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

  • PDF