Typical anti-jamming technologies based on array antennas, Space Time Adaptive Process (STAP) & Space Frequency Adaptive Process (SFAP), are very effective algorithms to perform nulling and beamforming. However, it does not perform equally well for all types of jamming signals. If the anti-jamming algorithm is not optimized for each signal type, anti-jamming performance deteriorates and the operation stability of the system become worse by unnecessary computation. Therefore, jamming classification technique is required to obtain optimal anti-jamming performance. Machine learning, which has recently been in the spotlight, can be considered to classify jamming signal. In general, performing supervised learning for classification requires a huge amount of data and new learning for unfamiliar signal. In the case of jamming signal classification, it is difficult to obtain large amount of data because outdoor jamming signal reception environment is difficult to configure and the signal type of attacker is unknown. Therefore, this paper proposes few-shot jamming signal classification technique using meta-learning and transfer-learning to train the model using a small amount of data. A training dataset is constructed by anti-jamming algorithm input data within the GNSS receiver when jamming signals are applied. For meta-learning, Model-Agnostic Meta-Learning (MAML) algorithm with a general Convolution Neural Networks (CNN) model is used, and the same CNN model is used for transfer-learning. They are trained through episodic training using training datasets on developed our Python-based simulator. The results show both algorithms can be trained with less data and immediately respond to new signal types. Also, the performances of two algorithms are compared to determine which algorithm is more suitable for classifying jamming signals.
The Journal of Korean Association of Computer Education
/
v.9
no.1
/
pp.41-48
/
2006
The latest several studies show that Wiki is a very efficient tools for collaborative learning in the distributed environments. Even though Wiki supports efficient knowledge sharing between group members, there are still some problems to be solved for collaborative learning. Since the structure of group contents becomes more complex and the links between pages are dynamically changed, each member of group has difficulties to perceive the changed contents and links on group pages. We designed the adaptive navigation system to guide individual browsing paths of each member through the calculating of friendship and the state of pages. At first we developed the relation model between member and each pages by the historical log that stored the change of pages and the activity of members, and then we implemented the adaptive navigation system using the model. Experimental results show that this adaptive system is very effective to share the group knowledge and to promote collaborative learning activities.
Location-based services are used as core services in various fields. In particular, in the field of public services such as emergency rescue, accurate location estimation technology is very important. Recently, the technology of tracking the location of self-isolation subjects for COVID-19 has become a major issue. Therefore, location estimation technology using personal smart devices is being studied in various ways, and the most widely used method is to use GPS. Other representative methods are using Wi-Fi, Pedestrian Dead Reckoning (PDR), Bluetooth Low Energy (BLE) beacons, and LTE signals. In this paper, we introduced a positioning technology using deep learning based on LTE Channel State Information-Reference Signal (CSI-RS) data, and confirmed the possibility through an outdoor location estimation experiment using a commercial LTE signal.
Recently, a number of research efforts have been taken to enhance interoperability and reusability of e-learning contents by developing ADL SCORM 2004 compliant contents. For useful and effective learning contents, content devlopers have to build the strategy of content sequencing in the phase of instructional design. However, many developers have difficulties in understanding the complicated specification of SCORM 2004 S&N(Sequencing&Navigation) and implementing SCORM sequencing. In this paper, we develop SCORM 2004 based best-practice sample contents utilizing SCORM sequencing and thus present a reference guide to the design and implementation of SCORM 2004 contents. It is expected that our sample contents illustrate an effective and useful application of SCORM 2004 as a de-facto e-learning standard, domestically and also internationally.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.263-266
/
2001
It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads and open area without any specific mark such as painted guide line or tape. In this method, Robot navigates with visual sensors, which uses visual information to navigate itself along the road. An Artificial Neural Network System was used to decide where to move. It is designed with USB web camera as visual sensor.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.11a
/
pp.369-370
/
2022
최근 자율 운항 선박에 대한 관심이 높아지고 있다. 특히, MUNIN (Maritime Unmanned Navigation through Intelligence in Networks) 프로젝트를 계기로 자율 운항 선박에 대한 개발과 연구가 활발히 진행되고 있다. 또한 국제해사기구 IMO는 자율 운항 선박 시대에 대응하기 위해 자율 선박을 MASS (Maritime Autonomous Surface Ship)라 정의하고 선박 자율화 정도에 따라 4단계 등급을 제시하고 있다. 완전한 자율 운항 선박에 대한 요구조건을 만족하기 위해서는 항로 결정과 제어기술이 필수적이다. 본 연구에서는 여러 가지 기술 중 선박의 최적경로를 생성하는 기법을 다룬다. 기존에 최적항로를 생성하기 위한 방법으로는 A*, Dijkstra와 같은 알고리즘들이 주로 사용되었다. 그러나 이와 같은 알고리즘은 섬이나 육지에 대한 충돌 회피는 고려하고 있지만 수심 및 연안 선박에 대한 규정들은 고려하지 않고 있어 실제로 적용하기에는 한계점이 있다. 따라서 본 연구에서는 안전을 위해 선박의 선저 여유 수심과, 해도에 규정되어 있는 선박 운항에 대한 여러 규정들을 반영하여 최적 항로를 생성하고자 한다. 최적 항로를 생성하기 위한 알고리즘으로는 강화학습 기반의 Q-learning 알고리즘을 적용하였다.
The educational exchange through e-learning is working very well in such case as develop e-learning, development of various learning tools, cooperative practical use of e-learning contents, etc. However because there were no considerations of LMS(Learning Management System) interconnection when each systems were developed, the exchange through e-learning is starting to raise a problem. Hence in this thesis, this paper presents designed model about efficient LMS interconnection through analysis case of exchange through e-learning and deduce problem. In the first place essential part for is defied study such as lecture establishment data, lecture data, user data, class data, student learning tracking to interconnection data, then constituted data interconnection table used view by data interconnection process. By experiment result, the accessibility between students and professors was more convenience, and decreased work process by less data exchange. Henceforth there are researches in development of various essential parts for study, considered security of LMS interconnection.
The development and distribution rate of smartphones have progressed so rapidly that it is safe for the entire nation to use them in the smart age, and the use of smartphones has become an essential medium for the use of domestic media content, and many people are using various contents regardless of gender, age, or region. Recently, various media outlets have been consuming video content for online learning, indicating that learners utilize video content online for learning. In the previous research, satisfaction studies were conducted according to the type of content, and the improvement plan was necessary because no research was conducted on how to evaluate the learning content itself and provide it to learners. In this paper, we would like to propose a system through evaluation and review of learning content itself as a way to improve the way of providing video content for learning and quality learning content.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.3
/
pp.377-383
/
2021
Recently, in accordance with the 4th industrial revolution, The use of autonomous mobile robots for flexible logistics transfer is increasing in factories, the warehouses and the service areas, etc. In large factories, many manual work is required to use Simultaneous Localization and Mapping(SLAM), so the need for the improved mobile robot autonomous driving is emerging. Accordingly, in this paper, an algorithm for mapless navigation that travels in an optimal path avoiding fixed or moving obstacles is proposed. For mapless navigation, the robot is trained to avoid fixed or moving obstacles through Deep Q Network (DQN) and accuracy 90% and 93% are obtained for two types of obstacle avoidance, respectively. In addition, DQN requires a lot of learning time to meet the required performance before use. To shorten this, the target size change algorithm is proposed and confirmed the reduced learning time and performance of obstacle avoidance through simulation.
Ships need to ensure safety during their navigation, which makes route determination highly important. It must be accompanied by a route following controller that can accurately follow the route. This study proposes a method for automatically generating the ship route based on deep reinforcement learning algorithm and following it using a route following controller. To generate a ship route, under keel clearance was applied to secure the ship's safety and navigation chart information was used to apply ship navigation related regulations. For the experiment, a target ship with a draft of 8.23 m was designated. The target route in this study was to depart from Busan port and arrive at the pilot boarding place of the Ulsan port. As a route following controller, a velocity type fuzzy P ID controller that could compensate for the limitation of a linear controller was applied. As a result of using the deep Q network, a route with a total distance of 62.22 km and 81 waypoints was generated. To simplify the route, the Douglas-Peucker algorithm was introduced to reduce the total distance to 55.67 m and the number of way points to 3. After that, an experiment was conducted to follow the path generated by the target ship. Experiment results revealed that the velocity type fuzzy P ID controller had less overshoot and fast settling time. In addition, it had the advantage of reducing the energy loss of the ship because the change in rudder angle was smooth. This study can be used as a basic study of route automatic generation. It suggests a method of combining ship route generation with the route following control.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.