Sim, Sungdae;Min, Jihong;Ahn, Seongyong;Lee, Jongwoo;Lee, Jung Suk;Bae, Gwangtak;Kim, Byungjun;Seo, Junwon;Choe, Tok Son
The Journal of Korea Robotics Society
/
v.17
no.3
/
pp.245-254
/
2022
Sensor dataset for autonomous driving is one of the essential components as the deep learning approaches are widely used. However, most driving datasets are focused on typical environments such as sunny or cloudy. In addition, most datasets deal with color images and lidar. In this paper, we propose a driving dataset with multi-spectral images and lidar in adverse weather conditions such as snowy, rainy, smoky, and dusty. The proposed data acquisition system has 4 types of cameras (color, near-infrared, shortwave, thermal), 1 lidar, 2 radars, and a navigation sensor. Our dataset is the first dataset that handles multi-spectral cameras in adverse weather conditions. The Proposed dataset is annotated as 2D semantic labels, 3D semantic labels, and 2D/3D bounding boxes. Many tasks are available on our dataset, for example, object detection and driveable region detection. We also present some experimental results on the adverse weather dataset.
Kim, Hyung-gyun;Jeong, Eun-ji;Baek, Seung-hyun;Jang, Min-seok;Lee, Yonsik
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.521-523
/
2021
As the invention of automobiles and construction of roads for vehicles began, the occurrence of traffic accidents began to increase. Accordingly, efforts were made to prevent traffic accidents by changing the road construction method and using signal systems such as traffic lights, but even today, numerous human and property damages have occurred due to traffic accidents caused by freezing of the road due to bad weather. In this paper, in order to reduce traffic accidents due to road freezing, we propose a method of transferring the ice detection information obtained by deep learning of infrared wavelength data obtained using an infrared camera to the vehicle's navigation.
Journal of Information Technology Applications and Management
/
v.30
no.6
/
pp.69-80
/
2023
Ship collision accidents not only cause loss of life and property damage, but also cause marine pollution and can become national disasters, so prevention is very important. Most of these ship collision accidents are caused by human factors due to the navigation officer's lack of vigilance and carelessness, and in many cases, they can be prevented through the support of a system that helps with situation awareness. Recently, artificial intelligence has been used to develop systems that help navigators recognize the situation, but the sea is very wide and deep, so it is difficult to secure maritime traffic datasets, which also makes it difficult to develop artificial intelligence models. In this paper, to solve these difficulties, we propose a method to build a dataset with characteristics similar to actual maritime traffic datasets. The proposed method uses segmentation and inpainting technologies to build a foreground and background dataset, and then applies compositing technology to create a synthetic dataset. Through prototype implementation and result analysis of the proposed method, it was confirmed that the proposed method is effective in overcoming the difficulties of dataset construction and complementing various scenes similar to reality.
Ye, Jin-Hee;Park, Chang-Bo;Seo, Hae-Ae;Song, Bang-Ho
Journal of The Korean Association For Science Education
/
v.22
no.2
/
pp.299-313
/
2002
A web-based instruction program for the enriched course under the 7th Revised National Curriculum of Biology in Korea was developed and the application effects to learners were analyzed. For the development of the web-based instruction program, five topics of biology from the enriched courses through 7th to 10th grades in the middle and high school science textbooks were selected and modulated with interrogative sentences. Each topic of programs was divided into four activity sections according to the learners' activity procedures supplemented with explanations and evaluations. Each activity was hyper-linked to multi-layers and animations. Further, a virtual experiment was also developed and an evaluation section designed by Java Script was attached. Among five topics, one topic of 'Reproduction and development' at 9th grade level was selected to examine the effects on students' learning. Among 247 9th grade students in the research subject school, only 67 students were able to accessible to ultra-thin Internet cables with their computers at home and they became an experimental group. A control group was assigned to those who are similar level of school science achievement to the experiment group and did not use the web-based program. It was found that most of 9th grade students are able to use Internet at home, however, they do not prefer to use Internet for homework or task project. Rather, most of students used Internet for e-mail or information navigation. Students used internet to solve problems of science and perceived the benefits of Internet for science learning. However, there are not many students to utilize Internet for science homework or task project. Students expressed that they do not prefer to use a web-based learning program for science learning due to lack of interests in science. The effects on students who studied with this program appeared to be significantly high compared to those who did not study with this program. Students who studied with this program positively evaluated this program, in particular, they enjoyed animation effect and virtual experiments. It was concluded that a web-based program for science learning should be developed and distributed through Internet in an attractive and interesting format for students. It was also concluded that various web-based programs for science learning with animation effect and virtual experiments should be developed to increase students' interests in science as well as to improve students' science achievements.
Recent works in the area of multimedia studies focus on a wide range of issues from the impact of multimedia on culture to its impact on economics and anything in between. The interconnectedness of the issues raised by this new practice is complicated by the fact that media are rapidly converging: in a very real way, multimedia is becoming a media prism that reflects the way in which media continually influence each other across disciplines and cultural borders. Thus, the impact of multimedia reflects a complicated crossroads where media, human experience, culture and technology converge. An effective design is generally based on shaping aesthetics for function and utility, with an emphasis on ease of use. However, in designing for cyberspace, it is possible to create narratives that challenge the interactor by encoding in the design an instructional aspect that teaches new approaches and forms. Such a design offers an equally aesthetic experience for the interactor as they explore the meaning of the work. This design approach has been used constructively in many applications. The crucial concern is to determine how little or how much information must be presented for the interactor to achieve a suitable level of cognition. This is always a balancing act: too much difficulty will result in interactor frustration and the abandonment of the activity and too little will result in boredom leading to the same negative result In addition, it can be anticipated that the interactor will bring her or his own level of experiential cognition and/or accretion, to the experience providing reflective cognition and/or restructure the learning curve. If the design of the application is outside their present experience, interactors will begin with established knowledge in order to explore the new work. Thus, it may be argued that the interactor explores, learns and cognates simultaneously based on primary experiential cognition. Learning is one of the most important keys to establishing a comfort level in a new media work. Once interactors have learned a new convention, they apply this cognitive knowledge to other new media experiences they may have. Pierre Levy would describe this process as a "new nomadism" that creates "an invisible space of understanding, knowledge, and intellectual power, within which new qualities of being and new ways of fashioning a society will flourish and mutate" (Levy xxv 1997). Thus, navigation itself of offers the interactors the opportunity to both apply and loam new cognitive skills. This suggests that new media narrative strategies are still in the process of developing unique conventions and, as a result, have not reached a level of coherent grammar. This paper intends to explore the cognitive aspects of new media design and in particular, will explore issues related to the design of new media interfaces. The paper will focus on the creation of narrative strategies that engage interactors through loaming curves thus enhancing interactivity.vity.
The purpose of this study was to identify the effect of Career Education Program(CEP) on freshmen of nursing department. A non-equivalent pre-post test of quasi-experimental design was used. 44 freshmen were assigned to an intervention group and 36 freshmen to a control group. The intervention program was composed of introduction, self-navigation, explore the world of work, career design and termination during 12 weeks from March to June, 2014. Data were collected before-and after program, and analyzed using the SPSS 22.0 program. There were significant increases in learning motivation (t=8.92, p<.001) and college life adaptation (t=3.51, p<.001) in the experimental group compared to the control group. This study suggests that CEP would be an efficient way to adapt to school and take learning motivation for nursing students. It is necessary to develop a systematic and tailored career education program for nursing students from a freshmen to a senior.
Journal of the Korean Society of Marine Environment & Safety
/
v.27
no.5
/
pp.574-583
/
2021
Predicting shipping markets is an important issue. Such predictions form the basis for decisions on investment methods, fleet formation methods, freight rates, etc., which greatly affect the profits and survival of a company. To this end, in this study, we propose a shipping freight rate prediction model for container ships using gated recurrent units (GRUs) and long short-term memory structure. The target of our freight rate prediction is the China Container Freight Index (CCFI), and CCFI data from March 2003 to May 2020 were used for training. The CCFI after June 2020 was first predicted according to each model and then compared and analyzed with the actual CCFI. For the experimental model, a total of six models were designed according to the hyperparameter settings. Additionally, the ARIMA model was included in the experiment for performance comparison with the traditional analysis method. The optimal model was selected based on two evaluation methods. The first evaluation method selects the model with the smallest average value of the root mean square error (RMSE) obtained by repeating each model 10 times. The second method selects the model with the lowest RMSE in all experiments. The experimental results revealed not only the improved accuracy of the deep learning model compared to the traditional time series prediction model, ARIMA, but also the contribution in enhancing the risk management ability of freight fluctuations through deep learning models. On the contrary, in the event of sudden changes in freight owing to the effects of external factors such as the Covid-19 pandemic, the accuracy of the forecasting model reduced. The GRU1 model recorded the lowest RMSE (69.55, 49.35) in both evaluation methods, and it was selected as the optimal model.
As electronic mails are being widely used for facility and speedness of information communication, as the amount of spam mails which have malice and advertisement increase and cause lots of social and economic problem. A number of approaches have been proposed to alleviate the impact of spam. These approaches can be categorized into pre-acceptance and post-acceptance methods. Post-acceptance methods include bayesian filters, collaborative filtering and e-mail prioritization which are based on words or sentances. But, spammers are changing those characteristics and sending to avoid filtering system. In the case of Korean, the abnormal usages can be much more than other languages because syllable is composed of chosung, jungsung, and jongsung. Existing formal expressions and learning algorithms have the limits to meet with those changes promptly and efficiently. So, we present an methods for recognizing Korean abnormal language(Koral) to improve accuracy and efficiency of filtering system. The method is based on syllabic than word and Smith-waterman algorithm. Through the experiment on filter keyword and e-mail extracted from mail server, we confirmed that Koral is recognized exactly according to similarity level. The required time and space costs are within the permitted limit.
In recent years, research on shipping market forecasting with the employment of non-linear AI models has attracted significant interest. In previous studies, input variables were selected with reference to past papers or by relying on the intuitions of the researchers. This paper attempts to address this issue by applying the stepwise regression model and the random forest model to the Cape-size bulk carrier market. The Cape market was selected due to the simplicity of its supply and demand structure. The preliminary selection of the determinants resulted in 16 variables. In the next stage, 8 features from the stepwise regression model and 10 features from the random forest model were screened as important determinants. The chosen variables were used to test both models. Based on the analysis of the models, it was observed that the random forest model outperforms the stepwise regression model. This research is significant because it provides a scientific basis which can be used to find the determinants in shipping market forecasting, and utilize a machine-learning model in the process. The results of this research can be used to enhance the decisions of chartering desks by offering a guideline for market analysis.
Kim, Kyeong-min;Kim, Seong-jin;NamKoong, Ho-jung;Jung, Yun-ho
Journal of Advanced Navigation Technology
/
v.26
no.4
/
pp.211-218
/
2022
Continuous wave (CW) radar has the advantage of reliability and accuracy compared to other sensors such as camera and lidar. In addition, binarized neural network (BNN) has a characteristic that dramatically reduces memory usage and complexity compared to other deep learning networks. Therefore, this paper proposes binarized neural network based human identification and motion classification system using CW radar. After receiving a signal from CW radar, a spectrogram is generated through a short-time Fourier transform (STFT). Based on this spectrogram, we propose an algorithm that detects whether a person approaches a radar. Also, we designed an optimized BNN model that can support the accuracy of 90.0% for human identification and 98.3% for motion classification. In order to accelerate BNN operation, we designed BNN hardware accelerator on field programmable gate array (FPGA). The accelerator was implemented with 1,030 logics, 836 registers, and 334.904 Kbit block memory, and it was confirmed that the real-time operation was possible with a total calculation time of 6 ms from inference to transferring result.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.