• Title/Summary/Keyword: Learning Navigation

Search Result 358, Processing Time 0.027 seconds

An Individual Learning Space System for WBI (WBI를 위한 개별 학습 공간 시스템)

  • 홍현술;서인규;박문환;한성국
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.63-66
    • /
    • 2000
  • WBI provides new opportunities to realize the flexible learning environment based on hypermedia and to support distance learning with a diverse interaction. The instructors or learners in WBI claim to be able to resolve reluctant fluctuations such as disorientation and cognitive overload. To overcome these phenomena, a supplementary tool able to manage learning space organized by the instructor's or learner's own way and offer effective navigation techniques is presented in this paper. A learning space management and navigation tool called HyperMap dynamically represents the learning space in the form of a two-dimensional labeled graph. This HyperMap also can be used for an instruction design tool, learner's portfolio for the exchange of learning experiences. and the assessment of WBI.

  • PDF

The SCORM Based Learning Support Framework for Ubiquitous Environment (유비쿼터스 환경을 위한 SCORM 기반의 학습지원 프레임워크)

  • Jeong, Hwa-Young;Hong, Bong-Hwa
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.661-667
    • /
    • 2010
  • A lot of existence e-learning are connected SCORM and LMS. And u-learning was researching as one of the new trend. But there are few research paper to connect the existing SCORM and LMS. In this paper, we proposed u-learning framework with connect the SCORM and LMS. And we used the mobile equipment transform module and learning object reconstruction module to apply each different characteristics of mobile equipment. Especially, information of the mobile equipment was stored and managed using the meta-data of the equipment.

The Learning Preference based Self-Directed Learning System using Topic Map (토픽 맵을 이용한 학습 선호도 기반의 자기주도적 학습 시스템)

  • Jeong, Hwa-Young;Kim, Yun-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.296-301
    • /
    • 2009
  • In the self-directed learning, learner can construct learning course. But it is very difficult for learner to construct learning course with understanding the various learning contents's characteristics. This research proposed the method to support to learner the information of learning contents type to fit the learner as calculate the learner's learning preference when learner construct the learning course. The calculating method of learning preference used preference vector value of topic map. To apply this method, we tested 20 learning sampling group and presented that this method help to learner to construct learning course as getting the high average degree of learning satisfaction.

  • PDF

Robust AUV Localization Incorporating Parallel Learning Module (병렬 학습 모듈을 통한 자율무인잠수정의 강인한 위치 추정)

  • Lee, Gwonsoo;Lee, Phil-Yeob;Kim, Ho Sung;Lee, Hansol;Kang, Hyungjoo;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.306-312
    • /
    • 2021
  • This paper describes localization of autonomous underwater vehicles(AUV), which can be used when some navigation sensor data are an outlier. In that situation, localization through existing navigation algorithms causes problems in long-range localization. Even if an outlier sensor data occurs once, problems of localization will continue. Also, if outlier sensor data is related to azimuth (direction of AUV), it causes bigger problems. Therefore, a parallel localization module, in which different algorithms are performed in a normal and abnormal situation should be designed. Before designing a parallel localization module, it is necessary to study an effective method in the abnormal situation. So, we propose a localization method through machine learning. For this method, a learning model consists of only Fully-Connected and trains through randomly contaminated real sea data. The ground truth of training is displacement between subsequent GPS data. As a result, average error in localization through the learning model is 0.4 times smaller than the average error in localization through the existing navigation algorithm. Through this result, we conclude that it is suitable for a component of the parallel localization module.

Obstacle Avoidance System for Autonomous CTVs in Offshore Wind Farms Based on Deep Reinforcement Learning (심층 강화학습 기반 자율운항 CTV의 해상풍력발전단지 내 장애물 회피 시스템)

  • Jingyun Kim;Haemyung Chon;Jackyou Noh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • Crew Transfer Vessels (CTVs) are primarily used for the maintenance of offshore wind farms. Despite being manually operated by professional captains and crew, collisions with other ships and marine structures still occur. To prevent this, the introduction of autonomous navigation systems to CTVs is necessary. In this study, research on the obstacle avoidance system of the autonomous navigation system for CTVs was conducted. In particular, research on obstacle avoidance simulation for CTVs using deep reinforcement learning was carried out, taking into account the currents and wind loads in offshore wind farms. For this purpose, 3 degrees of freedom ship maneuvering modeling for CTVs considering the currents and wind loads in offshore wind farms was performed, and a simulation environment for offshore wind farms was implemented to train and test the deep reinforcement learning agent. Specifically, this study conducted research on obstacle avoidance maneuvers using MATD3 within deep reinforcement learning, and as a result, it was confirmed that the model, which underwent training over 10,000 episodes, could successfully avoid both static and moving obstacles. This confirms the conclusion that the application of the methods proposed in this study can successfully facilitate obstacle avoidance for autonomous navigation CTVs within offshore wind farms.

Fishing Boat Rolling Movement of Time Series Prediction based on Deep Network Model (심층 네트워크 모델에 기반한 어선 횡동요 시계열 예측)

  • Donggyun Kim;Nam-Kyun Im
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.376-385
    • /
    • 2023
  • Fishing boat capsizing accidents account for more than half of all capsize accidents. These can occur for a variety of reasons, including inexperienced operation, bad weather, and poor maintenance. Due to the size and influence of the industry, technological complexity, and regional diversity, fishing ships are relatively under-researched compared to commercial ships. This study aimed to predict the rolling motion time series of fishing boats using an image-based deep learning model. Image-based deep learning can achieve high performance by learning various patterns in a time series. Three image-based deep learning models were used for this purpose: Xception, ResNet50, and CRNN. Xception and ResNet50 are composed of 177 and 184 layers, respectively, while CRNN is composed of 22 relatively thin layers. The experimental results showed that the Xception deep learning model recorded the lowest Symmetric mean absolute percentage error(sMAPE) of 0.04291 and Root Mean Squared Error(RMSE) of 0.0198. ResNet50 and CRNN recorded an RMSE of 0.0217 and 0.022, respectively. This confirms that the models with relatively deeper layers had higher accuracy.

A Design of u-Learning's Teaching and Learning Model in the Cloud Computing Environment (클라우드 컴퓨팅 환경에서의 u-러닝 교수학습 모형 설계)

  • Jeong, Hwa-Young;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.781-786
    • /
    • 2009
  • The cloud computing environment is a new trend of web based application parts. It can be IT business model that is able to easily support learning service and allocate resources through the internet to users. U-learning also is a maximal model with efficiency of the internet based learning. Thus, in this research, we proposed a design of u-learning's teaching and learning model that is applying the internet based learning. Proposal method is to fit u-learning and has 7 steps: Preparing, planning, gathering, learning process, analysis and evaluation, and feedback. We make a cloud u-learning server and cloud LMS to process and manage the service. And We also make a mobile devices meta data to aware the model.

  • PDF

The Content Structure of the Navigation Course Using Learning Hierarchy (학습위계에 의한 항해교과의 내용 구조화)

  • Yoon, Hyun-Sang
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.2
    • /
    • pp.198-216
    • /
    • 1994
  • The problem of promoting instructional effect using reorganizing the content of textbook is one of the major concerns of many education theorists and teachers. The results of many researches about above problem reveal that reorganizing the content of textbook promotes the ability of recall and problem solving of learners. The content structure of current navigation textbook revealed a categorical structure as its basic framework, though it seems to be a poor one. A categorical structure is known as providing an inferior information processing mechanism for learners than a learning hierarchy content structure is. Furthermore current content structure hasn't given any considerations to navigation in practice, spatial contexts and sequential events of ships from a harbor to another harbor. The learning hierarchy content structure has an advantage of giving learners more systematic and stronger knowledge networks than a categorical structure.

  • PDF

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

User Model Expansion for Adaptive Learning in Ubiquitous Environment (유비쿼터스 환경에서 적응적 학습을 위한 사용자 모델 확장)

  • Jeong, Hwa-Young;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.278-283
    • /
    • 2010
  • In this paper, we designed and proposed framework of extended user model to support student tailored learning in ubiquitous environment. For the purpose, existents model that is domain model, user model, adaptation model and interaction model connected to LMS(Learning Management System) and LCMS(Learning Contents Management System). Students information management process that is extended user model is in between LMS and adaptive learning system. And the process connected u-LMS to use u-learning. u-LMS and u-LCMS could support the learning contents through exchange the contents according to connect and request from the students.