Sang Jun Kim;Young Kyu Lee;Joon Hyo Rhee;Juhyun Lee;Gyeong Won Choi;Ju-Ik Oh;Donghui Yu
Journal of Positioning, Navigation, and Timing
/
v.13
no.1
/
pp.111-115
/
2024
This study builds a machine learning model optimized for clocks among various techniques in the field of artificial intelligence and applies it to clock stabilization or synchronization technology based on atomic clock noise characteristics. In addition, the possibility of providing stable source clock data is confirmed through the characteristics of machine learning predicted values during holdover of atomic clocks. The proposed machine learning model is evaluated by comparing its performance with the AutoRegressive Integrated Moving Average (ARIMA) model, an existing statistical clock prediction model. From the results of the analysis, the prediction model proposed in this study (MSE: 9.47476) has a lower MSE value than the ARIMA model (MSE: 221.2622), which means that it provides more accurate predictions. The prediction accuracy is based on understanding the complex nature of data that changes over time and how well the model reflects this. The application of a machine learning prediction model can be seen as a way to overcome the limitations of the statistical-based ARIMA model in time series prediction and achieve improved prediction performance.
The purpose of this study was to identify differences in learning patterns according to content complexity in video-based learning environments and to derive variables that have an important effect on learning achievement within particular learning contexts. To achieve our aims, we observed and collected data on learners' cognitive processes through perceived affordances, using behavioral logs and eye movements as specific indicators. These two types of reaction data were collected from 67 male and female university students who watched two learning videos classified according to their task complexity through the video learning player. The results showed that when the content complexity level was low, learners tended to navigate using other learners' digital logs, but when it was high, students tended to control the learning process and directly generate their own logs. In addition, using derived prediction models according to the degree of content complexity level, we identified the important variables influencing learning achievement in the low content complexity group as those related to video playback and annotation. In comparison, in the high content complexity group, the important variables were related to active navigation of the learning video. This study tried not only to apply the novel variables in the field of educational technology, but also attempt to provide qualitative observations on the learning process based on a quantitative approach.
Journal of the Korean Society of Marine Environment & Safety
/
v.29
no.5
/
pp.456-461
/
2023
The Korea Maritime Environment Corporation is conducting a comprehensive survey of the national marine ecosystem under the commission of the Ministry of Oceans and Fisheries (MOF) to ensure continuous use of the ocean, preserve and manage the marine ecosystem. The survey has set major peaks to investigate changes in the marine ecosystem around the Korean Peninsula. However as the peak has been set around the coast, it is necessary to expand the scope of investigation to encompass offshore areas. Meanwhile, the Aids to Navigation Division of the MOF supports a comprehensive national marine ecosystem survey providing photographs of fouling organisms during the Aids to Navigation lifting inspection, however, the photographs are provided only in consultation with the Korea Maritime Environment Corporation. Therefore, a study was conducted to generate information on fouling organisms using deep learning-based image processing algorithms by the lifting Aids to Navigation and dorsal buoys so that Aids to Navigation could be used as the major component of a comprehensive national marine ecosystem. If the Aids to Navigation are used as the peak of the survey, they could serve as fundamental data to enhance their own value as well as analyze abnormal marine conditions and ecosystem changes in Korea.
In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.
Craniofacial surgery requires comprehensive anatomical knowledge of the head and neck to ensure patient safety and surgical precision. Over recent decades, there have been significant advancements in imaging techniques and the development of real-time surgical navigation systems. Intraoperative navigation technology aligns surgical instruments with imaging-derived information on patient anatomy, enabling surgeons to closely follow preoperative plans. This system functions as a radiologic map, improving the accuracy of instrument placement and minimizing surgical complications. The introduction of first-generation navigation systems in the early 1990s revolutionized surgical procedures by enabling real-time tracking of instruments using preoperative imaging. Initially utilized in neurosurgery, intraoperative navigation has since become standard practice in otolaryngology, cranio-maxillofacial surgery, and orthopedics. Since the 2000s, second-generation navigation systems have been developed to meet the growing demand for precision across various surgical specialties. The adoption of these systems in craniofacial surgery has been slower, but their use is increasing, particularly in procedures such as foreign body removal, facial bone fracture reconstruction, tumor resection, and craniofacial reconstruction and implantation. In Korea, insurance coverage for navigation in craniofacial surgery began in 2021, and new medical technologies for orbital wall fracture treatment were approved in August 2022. These technologies have only recently become clinically available, but are expected to play an increasingly important role in craniofacial surgery. Intraoperative navigation enhances operative insight, improves target localization, and increases surgical safety. Although these systems have a steep learning curve and initially prolong surgery, efficiency improves with experience. Calibration issues, registration errors, and soft tissue deformation can introduce inaccuracies. Nonetheless, navigation technology is evolving, and the integration of intraoperative computed tomography data holds promise for further enhancements of surgical accuracy. This paper discusses the various types and applications of navigation employed in craniofacial surgery, highlighting their benefits and limitations.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2015.10a
/
pp.233-236
/
2015
전 세계 해기교육기관에서 해사영어(Maritime English, ME)를 가르치고 있는 교원들이 모여 매년 개최하는 IMEC (International Maritime English Conference)을 소개하고, 2015년에 개최된 제27차 컨퍼런스의 프로그램을 우리 회원들에게 안내하고자 하며, IMEC 27에서 소개된 ChatBot를 가지고 참석한 회원들과 함께 진행하는 워크숍을 개최하고자 한다.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.4
/
pp.361-365
/
2002
오랜 세월동안 위대한 이동수단을 만들어내고자 하는 인간의 꿈은 오늘날 눈부신 각종 운송기구를 만들어 내는 결실을 얻고 있다. 자동차 네비게이션 시스템도 그러한 결실중의 한 예라고 할 수 있을 것이다. 지능적으로 판단하고 정보를 처리할 수 있는 자동차 네비게이션 시스템을 부착함으로써 한 단계 발전한 운송수단으로 진화할 수 있을 것이다. 이러한 자동차 네비게이션 시스템의 단점이라면 한정된 리소스만으로 여러 가지 작업을 수행해야만 하는 어려움이다. 그래서 네비게이션 시스템의 주요 작업중의 하나인 경로를 추출하는 경로추출(Route Planning) 작업은 한정된 리소스에서도 최적의 경로를 찾을 수 있는 지능적인 방법이어야만 한다. 이러한 경로를 추출하는 작업을 하는데 기존에 일반적으로 쓰였던 두 가지 방법에는 Dijkstra s algorithm과 A*algorithm이 있다. 이 두 방법은 최적의 경로를 찾아낸다는 점은 있지만 경로를 찾기 위해서 알고리즘의 특성상 각각, 넓은 영역에 대하여 탐색작업을 해야 하고 또한 수행시간이 많이 걸린다는 단점과 또한 경로를 계산하기 위해서 Heuristic function을 추가적인 정보로 계산을 해야 한다는 단점이 있다. 본 논문에서는 적은 탐색 영역을 가지면서 또한 최적의 경로를 추출하는데 드는 수행시간은 작으며 나아가 동적인 교통환경에서도 최적의 경로를 추출할 수 있는 최적 경로 추출방법을 강화학습의 일종인 Q- Learning을 이용하여 구현해 보고자 한다.
Wrinkles are one of the main features of skin aging. Conventional image processing-based wrinkle detection is difficult to effectively cope with various skin images. In particular, Wrinkle extraction performance is significantly decreased when the wrinkles are not strong and similar to the surrounding skin. In this paper, deep learning is applied to extract wrinkles from microscopic skin images. In general, the microscope image is equipped with a wide-angle lens, so the brightness at the boundary area of the image is dark. In this paper, to solve this problem, the brightness of the skin image is estimated and corrected. In addition, We apply the structure of semantic segmentation network suitable for wrinkle extraction. The proposed method obtained an accuracy of 99.6% in test experiments on skin images collected in our laboratory.
Ubiquitous is a new computing environment with IT technology and information communication, and appling various equipments likes PDA and application parts. Recently, user's using environment is changing to smart phone and is expanded learning tools to learner without educational environment. Thus, in this paper, we designed SCORM based meta-data to use smart phone. For this purpose, we made U-learning server and smart phone process server that is to handling with existence LMS and SCORM. To apply smart phones characteristics that have different ones each other, meta-data was able to have some resource information as like CPU, screen size and memory. The meta-data adapter could be process the characteristics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.