• 제목/요약/키워드: Learning Module

검색결과 561건 처리시간 0.02초

Multi-Layer Perceptron 기법을 이용한 전력 분석 공격 구현 및 분석 (Implementation and Analysis of Power Analysis Attack Using Multi-Layer Perceptron Method)

  • 권홍필;배대현;하재철
    • 정보보호학회논문지
    • /
    • 제29권5호
    • /
    • pp.997-1006
    • /
    • 2019
  • 본 논문에서는 기존 전력 분석 공격의 어려움과 비효율성을 극복하기 위해 딥 러닝 기반의 MLP(Multi-Layer Perceptron) 알고리즘을 기반으로 한 공격 모델을 사용하여 암호 디바이스의 비밀 키를 찾는 공격을 시도하였다. 제안하는 전력 분석 공격 대상은 XMEGA128 8비트 프로세서 상에서 구현된 AES-128 암호 모듈이며, 16바이트의 비밀 키 중 한 바이트씩 복구하는 방식으로 구현하였다. 실험 결과, MLP 기반의 전력 분석 공격은 89.51%의 정확도로 비밀 키를 추출하였으며 전처리 기법을 수행한 경우에는 94.51%의 정확도를 나타내었다. 제안하는 MLP 기반의 전력 분석 공격은 학습을 통한 feature를 추출할 수 있는 성질이 있어 SVM(Support Vector Machine)과 같은 머신 러닝 기반 모델보다 우수한 공격 특성을 보임을 확인하였다.

양자화 기반의 모델 압축을 이용한 ONNX 경량화 (Lightweight of ONNX using Quantization-based Model Compression)

  • 장두혁;이정수;허준영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.93-98
    • /
    • 2021
  • 딥 러닝의 발전으로 다양한 AI 기반의 응용이 많아지고, 그 모델의 규모도 매우 커지고 있다. 그러나 임베디드 기기와 같이 자원이 제한적인 환경에서는 모델의 적용이 어렵거나 전력 부족 등의 문제가 존재한다. 이를 해결하기 위해서 클라우드 기술 또는 오프로딩 기술을 활용하거나, 모델의 매개변수 개수를 줄이거나 계산을 최적화하는 등의 경량화 방법이 제안되었다. 본 논문에서는 다양한 프레임워크들의 상호 교환 포맷으로 사용되고 있는 ONNX(개방형 신경망 교환 포맷) 포맷에 딥러닝 경량화 방법 중 학습된 모델의 양자화를 적용한다. 경량화 전 모델과의 신경망 구조와 추론성능을 비교하고, 양자화를 위한 다양한 모듈 방식를 분석한다. 실험을 통해 ONNX의 양자화 결과, 정확도는 차이가 거의 없으며 기존 모델보다 매개변수 크기가 압축되었으며 추론 시간 또한 전보다 최적화되었음을 알 수 있었다.

An Artificial Intelligence Approach for Word Semantic Similarity Measure of Hindi Language

  • Younas, Farah;Nadir, Jumana;Usman, Muhammad;Khan, Muhammad Attique;Khan, Sajid Ali;Kadry, Seifedine;Nam, Yunyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2049-2068
    • /
    • 2021
  • AI combined with NLP techniques has promoted the use of Virtual Assistants and have made people rely on them for many diverse uses. Conversational Agents are the most promising technique that assists computer users through their operation. An important challenge in developing Conversational Agents globally is transferring the groundbreaking expertise obtained in English to other languages. AI is making it possible to transfer this learning. There is a dire need to develop systems that understand secular languages. One such difficult language is Hindi, which is the fourth most spoken language in the world. Semantic similarity is an important part of Natural Language Processing, which involves applications such as ontology learning and information extraction, for developing conversational agents. Most of the research is concentrated on English and other European languages. This paper presents a Corpus-based word semantic similarity measure for Hindi. An experiment involving the translation of the English benchmark dataset to Hindi is performed, investigating the incorporation of the corpus, with human and machine similarity ratings. A significant correlation to the human intuition and the algorithm ratings has been calculated for analyzing the accuracy of the proposed similarity measures. The method can be adapted in various applications of word semantic similarity or module for any other language.

Automatic Detection System of Underground Pipe Using 3D GPR Exploration Data and Deep Convolutional Neural Networks

  • Son, Jeong-Woo;Moon, Gwi-Seong;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권2호
    • /
    • pp.27-37
    • /
    • 2021
  • 본 논문에서는 관로를 자동으로 검출하는 지하 관로 자동 탐색 시스템을 제안한다. 시간에 따른 지반변화, 관로 시공 불일치 등 여러 가지 요인으로 실제 관로의 위치가 지하 관로 도면과 일치하지 않는다. 이로 인하여 굴착공사나 관로 노후화에 의한 여러 사고가 발생한다. 사고를 방지하기 위해 GPR(지표 투과 레이더, Ground Penetrating Radar) 탐사를 통해 지하시설물을 찾아내는 작업이 이루어지고 있지만, 분석을 담당할 수 있는 전문가의 수가 부족하다. GPR 데이터는 매우 방대하며 분석과정에도 오랜 시간이 걸리기 때문이다. 이에 본 논문에서는 3D GPR 데이터를 자동으로 분석하기 위해 딥 러닝 기술인 3D 이미지 분할을 사용하고, 이에 적합한 데이터 생성 알고리즘을 제안한다. 또한 GPR 데이터 특성에 맞는 데이터 증강 기법, 데이터 전처리 모듈을 제안한다. 실험 결과를 통해 제안한 시스템은 F1 Score 40.4%의 성능을 보였으며 이를 통해 이미지 분할을 이용한 관로 분석의 가능성을 확인하였다.

SVM 모델 기반 가용성 예측 기능을 가진 야외마루 관리 서비스 구현 및 성능 평가 (Implementation and Performance Evaluation of Pavilion Management Service including Availability Prediction based on SVM Model)

  • 리자얀티 리타;황민태
    • 한국정보통신학회논문지
    • /
    • 제25권6호
    • /
    • pp.766-773
    • /
    • 2021
  • 본 논문은 숲속 야외 마루의 실시간 이용 현황을 제공할 뿐만 아니라 기계학습을 통한 예측 서비스를 제공하는 야외 마루 관리 서비스의 구현 및 성능 평가 결과를 담고있다. 개발한 하드웨어 프로토타입은 모션 감지 센서를 이용해 야외 마루의 점유 여부를 감지한 후 위치 정보, 날짜 및 시간, 온도 및 습도 데이터와 함께 클라우드 기반 데이터베이스로 전달한다. 수집된 야외 마루의 실시간 이용 현황은 이용자들에게 모바일 애플리케이션을 통해 제공된다. 성능 평가 결과 하드웨어 모듈에서부터 모바일 애플리케이션까지 평균 1.9초의 응답 시간을 보여주었으며, 정확도는 99%를 보여주고 있음을 확인하였다. 아울러 수집 데이터에다 기계학습 기반의 SVM(Support Vector Model) 모델을 적용한 야외 마루의 가용성 예측 서비스를 구현하고서 이를 모바일 및 웹 애플리케이션을 통해 제공할 수 있도록 하였다.

경혈 교육을 위한 3D 및 증강현실 기술을 활용한 한의학 통합교육 테이블 개발 (A Development of an Acupoints Education Table using 3D Technology and Augmented Reality)

  • 양승정;류창주;김상철;김재석
    • Korean Journal of Acupuncture
    • /
    • 제38권4호
    • /
    • pp.267-274
    • /
    • 2021
  • Objectives : Acupoints education is important in that it can determine the clinical competency of Korean Medicine Doctors (KMDs). Accordingly, we aimed to develop a practical simulator for acupoints education, acupoints training, acupoints practice, and acupoints evaluation. Methods : Korean Medicine (KM) SMART Table can be divided into hardware, server and components, and is organically linked. We develop KM SMART Table that combines the hardware of a human-sized table with a UHD display capable of multi-touch in two cases and software that can teach acupoints. We make Augmented Reality (AR) contents linked with KM SMART Table contents and develop applications that can use contents using mobile devices. By developing an AR image tracking module to react with KM SMART Table, it enables acupoint learning according to the mobile device platform and human anatomy. Results : The current system is a prototype where some 3D technology has been implemented, but the AR function will be produced later. New learning using 3D and AR will be required during acupoints education and acupoints practice. It will be used a lot in OSCE (Objective Structured Clinical Examination) practices for strengthening the competency of KMDs, and it will be of great help not only in KM education as a unique simulator of KM, but also in the practice of acupuncture and chuna for musculoskeletal diseases. Conclusions : The KM SMART Table is a technology that combines 3D and AR to learn acupoints, and to conduct acupoints OSCE practice, and we suggest that it can be usefully used for educational evaluation.

k-근접 이웃 및 비전센서를 활용한 프리팹 강구조물 조립 성능 평가 기술 (Assembly Performance Evaluation for Prefabricated Steel Structures Using k-nearest Neighbor and Vision Sensor)

  • 방현태;유병준;전해민
    • 한국전산구조공학회논문집
    • /
    • 제35권5호
    • /
    • pp.259-266
    • /
    • 2022
  • 본 논문에서는 프리팹 구조물의 품질관리를 위한 딥러닝 및 비전센서 기반의 조립 성능 평가 모델을 개발하였다. 조립부 검출을 위해 인코더-디코더 형식의 네트워크와 수용 영역 블록 합성곱 모듈을 적용한 딥러닝 모델을 사용하였다. 검출된 조립부 영역 내의 볼트홀을 검출하고, 볼트홀의 위치 값을 산정하여 k-근접 이웃 기반 모델을 사용하여 조립 품질을 평가하였다. 제안된 기법의 성능을 검증하기 위해 조립부 모형을 3D 프린팅을 이용하여 제작하여 조립부 검출 및 조립 성능 예측 모델의 성능을 검증하였다. 성능 검증 결과 높은 정밀도로 조립부를 검출하였으며, 검출된 조립부내의 볼트홀의 위치를 바탕으로 프리팹 구조물의 조립 성능을 5% 이하의 판별 오차로 평가할 수 있음을 확인하였다.

아쿠아포닉스의 생육 환경을 고려한 성장 측정 시스템의 설계 (A Design of Growth Measurement System Considering the Cultivation Environment of Aquaponics)

  • 이현섭;김진덕
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.27-33
    • /
    • 2023
  • 웰빙과 건강관리에 대한 관심 증가와 미세먼지로 인한 공기질의 악화, 다양한 토양 및 수질 오염으로 인해 친환경 식재료에 대한 요구가 급증하고 있다. 이와 같은 현상의 해결책으로 아쿠아포닉스가 대두되고 있다. 그러나 최적의 생육 환경을 도출하는 기법이 선행되어야 한다. 본 논문에서는 기존 아쿠아포닉스의 특성을 고려하는 지능형 식물 성장 측정 시스템을 설계하고자 한다. 특히, 지능형 아쿠아포닉스 생산관리 모듈 중 고성능의 처리 자원을 갖지 않는 생산 현장에 적합한 시스템 설계에 주안점을 두고, 균일한 생육환경을 제공하는 경우의 학습 데이터 및 판단 시스템을 위한 모듈 구성 방안을 제안하고자 한다.

윈도우 주의 모듈 기반 트랜스포머를 활용한 이미지 분류 방법 (Window Attention Module Based Transformer for Image Classification)

  • 김상훈;김원준
    • 방송공학회논문지
    • /
    • 제27권4호
    • /
    • pp.538-547
    • /
    • 2022
  • 최근 소개된 트랜스포머(Transformer)를 이용한 이미지 분류 방법들은 기존 합성곱 신경망 기반 방법 대비 괄목할 만한 성능 향상을 보여주고 있다. 지역적 특성을 효과적으로 고려하기 위해 이미지 영역을 복수의 윈도우 영역으로 나누어 트랜스포머를 적용하는 방법에 대한 연구가 활발히 진행되어 왔으나, 윈도우 간 관계 및 중요도에 대한 학습은 여전히 부족한 상황이다. 본 논문에서는 이러한 문제점을 극복하기 위해 각 윈도우의 중요도를 학습에 반영할 수 있는 트랜스포머 구조를 제안한다. 제안하는 방법은 각 윈도우 영역에 대한 자기주의(Self-attention) 연산을 기반으로 압축과 완전 연결 계층(Fully Connected Layer)을 통해 각 윈도우 영역의 중요도를 계산한다. 계산된 중요도는 윈도우 영역들 간의 관계를 학습한 가중치로써 각 윈도우 영역에 곱해져 특징 값을 재조정 한다. 실험 결과를 통해 제안하는 방법이 기존 트랜스포머 기반 방법의 성능을 효과적으로 향상 시킬 수 있음을 보인다.

Life prediction of IGBT module for nuclear power plant rod position indicating and rod control system based on SDAE-LSTM

  • Zhi Chen;Miaoxin Dai;Jie Liu;Wei Jiang;Yuan Min
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3740-3749
    • /
    • 2024
  • To reduce the losses caused by aging failure of insulation gate bipolar transistor (IGBT), which is the core components of nuclear power plant rod position indicating and rod control (RPC) system. It is necessary to conduct studies on its life prediction. The selection of IGBT failure characteristic parameters in existing research relies heavily on failure principles and expert experience. Moreover, the analysis and learning of time-domain degradation data have not been fully conducted, resulting in low prediction efficiency as the monotonicity, time correlation, and poor anti-interference ability of extracted degradation features. This paper utilizes the advantages of the stacked denoising autoencoder(SDAE) network in adaptive feature extraction and denoising capabilities to perform adaptive feature extraction on IGBT time-domain degradation data; establishes a long-short-term memory (LSTM) prediction model, and optimizes the learning rate, number of nodes in the hidden layer, and number of hidden layers using the Gray Wolf Optimization (GWO) algorithm; conducts verification experiments on the IGBT accelerated aging dataset provided by NASA PCoE Research Center, and selects performance evaluation indicators to compare and analyze the prediction results of the SDAE-LSTM model, PSOLSTM model, and BP model. The results show that the SDAE-LSTM model can achieve more accurate and stable IGBT life prediction.