• Title/Summary/Keyword: Learning Module

Search Result 561, Processing Time 0.028 seconds

Prediction of Ship Roll Motion using Machine Learning-based Surrogate Model (기계학습기반의 근사모델을 이용한 선박 횡동요 운동 예측)

  • Kim, Young-Rong;Park, Jun-Bum;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.395-405
    • /
    • 2018
  • Seakeeping safety module in Korean e-Navigation system is one of the ship remote monitoring services that is employed to ensure the safety of ships by monitoring the ship's real time performance and providing a warning in advance when the abnormal conditions are encountered in seakeeping performance. In general, seakeeping performance has been evaluated by simulating ship motion analysis under specific conditions for its design. However, due to restriction of computation time, it is not realistic to perform simulations to evaluate seakeeping performance under real-time operation conditions. This study aims to introduce a reasonable and faster method to predict a ship's roll motion which is one of the factors used to evaluate a ship's seakeeping performance by using a machine learning-based surrogate model. Through the application of various learning techniques and sampling conditions on training data, it was observed that the difference of roll motion between a given surrogate model and motion analysis was within 1%. Therefore, it can be concluded that this method can be useful to evaluate the seakeeping performance of a ship in real-time operation.

Development of Fender Segmentation System for Port Structures using Vision Sensor and Deep Learning (비전센서 및 딥러닝을 이용한 항만구조물 방충설비 세분화 시스템 개발)

  • Min, Jiyoung;Yu, Byeongjun;Kim, Jonghyeok;Jeon, Haemin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.28-36
    • /
    • 2022
  • As port structures are exposed to various extreme external loads such as wind (typhoons), sea waves, or collision with ships; it is important to evaluate the structural safety periodically. To monitor the port structure, especially the rubber fender, a fender segmentation system using a vision sensor and deep learning method has been proposed in this study. For fender segmentation, a new deep learning network that improves the encoder-decoder framework with the receptive field block convolution module inspired by the eccentric function of the human visual system into the DenseNet format has been proposed. In order to train the network, various fender images such as BP, V, cell, cylindrical, and tire-types have been collected, and the images are augmented by applying four augmentation methods such as elastic distortion, horizontal flip, color jitter, and affine transforms. The proposed algorithm has been trained and verified with the collected various types of fender images, and the performance results showed that the system precisely segmented in real time with high IoU rate (84%) and F1 score (90%) in comparison with the conventional segmentation model, VGG16 with U-net. The trained network has been applied to the real images taken at one port in Republic of Korea, and found that the fenders are segmented with high accuracy even with a small dataset.

Machine-learning-based out-of-hospital cardiac arrest (OHCA) detection in emergency calls using speech recognition (119 응급신고에서 수보요원과 신고자의 통화분석을 활용한 머신 러닝 기반의 심정지 탐지 모델)

  • Jong In Kim;Joo Young Lee;Jio Chung;Dae Jin Shin;Dong Hyun Choi;Ki Hong Kim;Ki Jeong Hong;Sunhee Kim;Minhwa Chung
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.109-118
    • /
    • 2023
  • Cardiac arrest is a critical medical emergency where immediate response is essential for patient survival. This is especially true for Out-of-Hospital Cardiac Arrest (OHCA), for which the actions of emergency medical services in the early stages significantly impact outcomes. However, in Korea, a challenge arises due to a shortage of dispatcher who handle a large volume of emergency calls. In such situations, the implementation of a machine learning-based OHCA detection program can assist responders and improve patient survival rates. In this study, we address this challenge by developing a machine learning-based OHCA detection program. This program analyzes transcripts of conversations between responders and callers to identify instances of cardiac arrest. The proposed model includes an automatic transcription module for these conversations, a text-based cardiac arrest detection model, and the necessary server and client components for program deployment. Importantly, The experimental results demonstrate the model's effectiveness, achieving a performance score of 79.49% based on the F1 metric and reducing the time needed for cardiac arrest detection by 15 seconds compared to dispatcher. Despite working with a limited dataset, this research highlights the potential of a cardiac arrest detection program as a valuable tool for responders, ultimately enhancing cardiac arrest survival rates.

Dynamic Distributed Adaptation Framework for Quality Assurance of Web Service in Mobile Environment (모바일 환경에서 웹 서비스 품질보장을 위한 동적 분산적응 프레임워크)

  • Lee, Seung-Hwa;Cho, Jae-Woo;Lee, Eun-Seok
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.839-846
    • /
    • 2006
  • Context-aware adaptive service for overcoming the limitations of wireless devices and maintaining adequate service levels in changing environments is becoming an important issue. However, most existing studies concentrate on an adaptation module on the client, proxy, or server. These existing studies thus suffer from the problem of having the workload concentrated on a single system when the number of users increases md, and as a result, increases the response time to a user's request. Therefore, in this paper the adaptation module is dispersed and arranged over the client, proxy, and server. The module monitors the contort of the system and creates a proposition as to the dispersed adaptation system in which the most adequate system for conducting operations. Through this method faster adaptation work will be made possible even when the numbers of users increase, and more stable system operation is made possible as the workload is divided. In order to evaluate the proposed system, a prototype is constructed and dispersed operations are tested using multimedia based learning content, simulating server overload and compared the response times and system stability with the existing server based adaptation method. The effectiveness of the system is confirmed through this results.

Class prediction of an independent sample using a set of gene modules consisting of gene-pairs which were condition(Tumor, Normal) specific (조건(암, 정상)에 따라 특이적 관계를 나타내는 유전자 쌍으로 구성된 유전자 모듈을 이용한 독립샘플의 클래스예측)

  • Jeong, Hyeon-Iee;Yoon, Young-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.197-207
    • /
    • 2010
  • Using a variety of data-mining methods on high-throughput cDNA microarray data, the level of gene expression in two different tissues can be compared, and DEG(Differentially Expressed Gene) genes in between normal cell and tumor cell can be detected. Diagnosis can be made with these genes, and also treatment strategy can be determined according to the cancer stages. Existing cancer classification methods using machine learning select the marker genes which are differential expressed in normal and tumor samples, and build a classifier using those marker genes. However, in addition to the differences in gene expression levels, the difference in gene-gene correlations between two conditions could be a good marker in disease diagnosis. In this study, we identify gene pairs with a big correlation difference in two sets of samples, build gene classification modules using these gene pairs. This cancer classification method using gene modules achieves higher accuracy than current methods. The implementing clinical kit can be considered since the number of genes in classification module is small. For future study, Authors plan to identify novel cancer-related genes with functionality analysis on the genes in a classification module through GO(Gene Ontology) enrichment validation, and to extend the classification module into gene regulatory networks.

A Design of the Vehicle Crisis Detection System(VCDS) based on vehicle internal and external data and deep learning (차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템 설계)

  • Son, Su-Rak;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.128-133
    • /
    • 2021
  • Currently, autonomous vehicle markets are commercializing a third-level autonomous vehicle, but there is a possibility that an accident may occur even during fully autonomous driving due to stability issues. In fact, autonomous vehicles have recorded 81 accidents. This is because, unlike level 3, autonomous vehicles after level 4 have to judge and respond to emergency situations by themselves. Therefore, this paper proposes a vehicle crisis detection system(VCDS) that collects and stores information outside the vehicle through CNN, and uses the stored information and vehicle sensor data to output the crisis situation of the vehicle as a number between 0 and 1. The VCDS consists of two modules. The vehicle external situation collection module collects surrounding vehicle and pedestrian data using a CNN-based neural network model. The vehicle crisis situation determination module detects a crisis situation in the vehicle by using the output of the vehicle external situation collection module and the vehicle internal sensor data. As a result of the experiment, the average operation time of VESCM was 55ms, R-CNN was 74ms, and CNN was 101ms. In particular, R-CNN shows similar computation time to VESCM when the number of pedestrians is small, but it takes more computation time than VESCM as the number of pedestrians increases. On average, VESCM had 25.68% faster computation time than R-CNN and 45.54% faster than CNN, and the accuracy of all three models did not decrease below 80% and showed high accuracy.

A modified U-net for crack segmentation by Self-Attention-Self-Adaption neuron and random elastic deformation

  • Zhao, Jin;Hu, Fangqiao;Qiao, Weidong;Zhai, Weida;Xu, Yang;Bao, Yuequan;Li, Hui
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Despite recent breakthroughs in deep learning and computer vision fields, the pixel-wise identification of tiny objects in high-resolution images with complex disturbances remains challenging. This study proposes a modified U-net for tiny crack segmentation in real-world steel-box-girder bridges. The modified U-net adopts the common U-net framework and a novel Self-Attention-Self-Adaption (SASA) neuron as the fundamental computing element. The Self-Attention module applies softmax and gate operations to obtain the attention vector. It enables the neuron to focus on the most significant receptive fields when processing large-scale feature maps. The Self-Adaption module consists of a multiplayer perceptron subnet and achieves deeper feature extraction inside a single neuron. For data augmentation, a grid-based crack random elastic deformation (CRED) algorithm is designed to enrich the diversities and irregular shapes of distributed cracks. Grid-based uniform control nodes are first set on both input images and binary labels, random offsets are then employed on these control nodes, and bilinear interpolation is performed for the rest pixels. The proposed SASA neuron and CRED algorithm are simultaneously deployed to train the modified U-net. 200 raw images with a high resolution of 4928 × 3264 are collected, 160 for training and the rest 40 for the test. 512 × 512 patches are generated from the original images by a sliding window with an overlap of 256 as inputs. Results show that the average IoU between the recognized and ground-truth cracks reaches 0.409, which is 29.8% higher than the regular U-net. A five-fold cross-validation study is performed to verify that the proposed method is robust to different training and test images. Ablation experiments further demonstrate the effectiveness of the proposed SASA neuron and CRED algorithm. Promotions of the average IoU individually utilizing the SASA and CRED module add up to the final promotion of the full model, indicating that the SASA and CRED modules contribute to the different stages of model and data in the training process.

A Korean menu-ordering sentence text-to-speech system using conformer-based FastSpeech2 (콘포머 기반 FastSpeech2를 이용한 한국어 음식 주문 문장 음성합성기)

  • Choi, Yerin;Jang, JaeHoo;Koo, Myoung-Wan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.359-366
    • /
    • 2022
  • In this paper, we present the Korean menu-ordering Sentence Text-to-Speech (TTS) system using conformer-based FastSpeech2. Conformer is the convolution-augmented transformer, which was originally proposed in Speech Recognition. Combining two different structures, the Conformer extracts better local and global features. It comprises two half Feed Forward module at the front and the end, sandwiching the Multi-Head Self-Attention module and Convolution module. We introduce the Conformer in Korean TTS, as we know it works well in Korean Speech Recognition. For comparison between transformer-based TTS model and Conformer-based one, we train FastSpeech2 and Conformer-based FastSpeech2. We collected a phoneme-balanced data set and used this for training our models. This corpus comprises not only general conversation, but also menu-ordering conversation consisting mainly of loanwords. This data set is the solution to the current Korean TTS model's degradation in loanwords. As a result of generating a synthesized sound using ParallelWave Gan, the Conformer-based FastSpeech2 achieved superior performance of MOS 4.04. We confirm that the model performance improved when the same structure was changed from transformer to Conformer in the Korean TTS.

Comparison of Motor Skill Acquisition according to Types of Sensory-Stimuli Cue in Serial Reaction Time Task

  • Kwon, Yong Hyun;Lee, Myoung Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.3
    • /
    • pp.191-195
    • /
    • 2014
  • Purpose: The purpose of this study is to investigate whether types of sensory-stimuli cues in terms of visual, auditory, and visuoauditory cues can be affected to motor sequential learning in healthy adults, using serial reaction time task. Methods: Twenty four healthy subjects participated in this study, who were randomly allocated into three groups, in terms of visual-stimuli (VS) group, auditory-stimuli (AS) group, and visuoauditory-stimuli (VAS) group. In SRT task, eight Arabic numbers were adopted as presentational stimulus, which were composed of three different types of presentational modules, in terms of visual, auditory, and visuoauditory stimuli. On an experiment, all subjects performed total 3 sessions relevant to each stimulus module with a pause of 10 minutes for training and pre-/post-tests. At the pre- and post-tests, reaction time and accuracy were calculated. Results: In reaction time, significant differences were founded in terms of between-subjects, within-subjects, and interaction effect for group ${\times}$ repeated factor. In accuracy, no significant differences were observed in between-group and interaction effect for groups ${\times}$ repeated factor. However, a significant main effect of within-subjects was observed. In addition, a significant difference was showed in comparison of differences of changes between the pre- and post-test only in the reaction time among three groups. Conclusion: This study suggest that short-term sequential motor training on one day induced behavioral modification, such as speed and accuracy of motor response. In addition, we found that motor training using visual-stimuli cue showed better effect of motor skill acquisition, compared to auditory and visuoauditory-stimuli cues.

Monitoring of Machining State in Turning by Means of Information and Feed Motor Current (NC 정보와 이송축 모터 전류를 이용한 선삭 가공 상태 감시)

  • 안중환;김화영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.156-161
    • /
    • 1992
  • In this research a monitoring system for turning using NC information and the current of feed motor as a monitoring signal was developed. The overall system consists of modules such as learning process, NC data transmission, generation of forecast information, signal acquisition, monitoring and post process. In the learning process, the reference data and the cutting force equation necessary for monitoring are obtained from the accumulated monitoring results. In the generation of forecast information, the information of forecasted cutting forces is acquired from the cutting force equation and NC program and appended to each NC block as a monitor code. Reliability of monitoring is improved by using the monitor code in the real-time monitoring. Monitoring module is divided into two parts : the off-line monitoring where errors of NC program are checked and the on-line monitoring where the level of motor current is monitored during cutting operations. If the actual current level exceeds the limit value provided by the monitor code in the level monitoring, it is recognized as abnormal. In the event of abnormal status, the post processor sends the emergency stop signal to NC controller to stop the operation. Actual experiments have shown that the developed monitoring system works well.