Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.873-875
/
2013
정보기술 발전에 따라 정보 활용 및 처리 역량이 상승하면서 교육 환경의 지능화, 네트워크화로 기술간, 서비스 간 융 복합을 통한 다양한 학습 내용 및 방법이 출현하였으며, 최근 e-러닝 산업에서 스마트기기 보급 확산과 상황 적응적이고 자기 주도적 학습에 대한 소비자의 니즈가 증가하면서 새로운 형태의 교육시스템인 스마트러닝이 부각되고 있다. 이러한 교육 패러다임의 변화에 따라 기존의 교육 콘텐츠를 스마트기기에 적용하기 위해서는 콘텐츠 및 솔루션 구조의 개선이 요구되며, 또한 서비스 제공의 측면에서 다양한 교육 콘텐츠 연동과 교육 서비스 융합을 위한 표준 플랫폼 적용이 필요하다. 이에 본 논문에서는 JVM 환경의 PC 인터페이스를 통해 ePub 표준의 교육용 멀티미디어 콘텐츠 제작기능과 기존 서책형 파일 포맷의 자료 정보를 응용하기 위한 정보변환 모듈, 스마트 기기용 ePub 전자책 뷰어를 포함하는 통합 솔루션 소프트웨어인 ePub Solution을 설계하였다.
Conducting sentiment analysis and opinion mining are challenging tasks in natural language processing. Many of the sentiment analysis and opinion mining applications focus on product reviews, social media reviews, forums and microblogs whose reviews are topic-similar and opinion-rich. In this paper, we try to analyze the sentiments of sentences from online webcast reviews that scroll across the screen, which we call live barrages. Contrary to social media comments or product reviews, the topics in live barrages are more fragmented, and there are plenty of invalid comments that we must remove in the preprocessing phase. To extract evaluative sentiment sentences, we proposed a novel approach that clusters the barrages from the same commenter to solve the problem of scattering the information for each barrage. The method developed in this paper contains two subtasks: in the data preprocessing phase, we cluster the sentences from the same commenter and remove unavailable sentences; and we use a semi-supervised machine learning approach, the naïve Bayes algorithm, to analyze the sentiment of the barrage. According to our experimental results, this method shows that it performs well in analyzing the sentiment of online webcast barrages.
A modified model combining Kriging and Monte Carlo method (MC) is proposed for probabilistic estimation of tunnel face stability in this paper. In the model, a novel uniform design is adopted to train the Kriging, instead of the existing active learning function. It has advantage of avoiding addition of new training points iteratively, and greatly saves the computational time in model training. The kinematic approach of limit analysis is employed to define the deterministic computational model of face failure, in which the Hoek-Brown failure criterion is introduced to account for the nonlinear behaviors of rock mass. The trained Kriging is used as a surrogate model to perform MC with dramatic reduction of calls to actual limit state function. The parameters in Hoek-Brown failure criterion are considered as random variables in the analysis. The failure probability is estimated by direct MC to test the accuracy and efficiency of the proposed probabilistic model. The influences of uncertainty level, correlation relationship and distribution type of random variables are further discussed using the proposed approach. In summary, the probabilistic model is an accurate and economical alternative to perform probabilistic stability analysis of tunnel face excavated in spatially random Hoek- Brown media.
International Journal of Internet, Broadcasting and Communication
/
v.11
no.3
/
pp.106-110
/
2019
The interaural level difference (ILD) used for the sound localization using stereo signals is to find the difference in energy that the sound source reaches both ears. The conventional ILD does not consider the time difference of the stereo signals, which is a factor of lowering the accuracy. In this paper, we propose a synchronized ILD that obtains the ILD after synchronizing these time differences. This method uses the cross-correlation function (CCF) to calculate the time difference to reach both ears and use it to obtain synchronized ILD. In order to prove the performance of the proposed method, we conducted two sound localization experiments. In each experiment, the synchronized ILD and CCF or only the synchronized ILD were given as inputs of the deep neural networks (DNN), respectively. In this paper, we evaluate the performance of sound localization with mean error and accuracy of sound localization. Experimental results show that the proposed method has better performance than the conventional methods.
This paper aims to introduce some useful multimedia freewares, and also support Chinese instructor with discussing how to operate them for instructional design of multimedia language learning class. For this aims, this paper consists of three parts: First, instructional design. This part is focused to what kind of instructional model to be based on, for example, Dick & Carey model, ADDIE model, ASSURE model etc. This part introduces these models, and modifies ADDIE and ASSURE model to D.D.A.I.E.S and S.S.A.U.R.E.S as 'A(nalysis)' in these model may apply to the next 'D(evelopment)' on ADDIE, 'S(elect Methods, Media and Materials)' on ASSURE in the practical Chinese class. Second, Programme: What to use. This part is focused to what kind of free software we can use. In the web site online, there are huge free softwares so we usually hesitate to select and also don't know how to operate even though selected one of them. This part, accordingly, introduces ten of useful freewares and compares each other in terms of usefulness for Chinese instructors. Third, Programme: How to use. It is of no use just to know what to use but not to know how to operate, so this part describes how to use freewares like a kind of manual in detail as far as possible. In conclusion, we hope more Chinese instructors to learn and use more useful freewares for designing the better multimedia Chinese class by this paper.
In recent years research on automatic font generation with machine learning mainly focus on using transformation-based methods, in comparison, generative model-based methods of font generation have received less attention. Transformation-based methods learn a mapping of the transformations from an existing input to a target. This makes them ambiguous because in some cases a single input reference may correspond to multiple possible outputs. In this work, we focus on font generation using the generative model-based methods which learn the buildup of the characters from noise-to-image. We propose a novel way to train a conditional generative deep neural model so that we can achieve font style control on the generated font images. Our research demonstrates how to generate new font images conditioned on both character class labels and character style labels when using the generative model-based methods. We achieve this by introducing a modified generator network which is given inputs noise, character class, and style, which help us to calculate losses separately for the character class labels and character style labels. We show that adding the character style vector on top of the character class vector separately gives the model rich information about the font and enables us to explicitly specify not only the character class but also the character style that we want the model to generate.
In the image object classification problem, low-resolution images may have a negative impact on the classification result, especially when the classification method, such as a convolutional neural network (CNN) model, is trained on a high-resolution (HR) image dataset. In this paper, we analyze the behavior of applying a classical super-resolution (SR) method such as bicubic interpolation, and a deep CNN model such as SRCNN to enhance low-resolution (LR) weeds images used for classification. Using an HR dataset, we first train a CNN model for weeds image classification with a default input size of 128 × 128. Then, given an LR weeds image, we rescale to default input size by applying the bicubic interpolation or the SRCNN model. We analyze these two approaches on the Chonnam National University (CNU) weeds dataset and find that SRCNN is suitable for the image size is smaller than 80 × 80, while bicubic interpolation is convenient for a larger image.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.2
/
pp.412-434
/
2023
This study discusses the high-order diffusion method in the wavelet domain. It aims to improve the edge protection capability of the high-order diffusion method using wavelet coefficients that can reflect image information. During the first step of the proposed diffusion method, the wavelet packet decomposition is a more refined decomposition method that can extract the texture and structure information of the image at different resolution levels. The high-frequency wavelet coefficients are then used to construct the edge detection function. Subsequently, because accurate wavelet coefficients can more accurately reflect the edges and details of the image information, by introducing the idea of state weight, a scheme for recovering wavelet coefficients is proposed. Finally, the edge detection function is constructed by the module of the wavelet coefficients to guide high-order diffusion, the denoised image is obtained. The experimental results showed that the method presented in this study improves the denoising ability of the high-order diffusion model, and the edge protection index (SSIM) outperforms the main methods, including the block matching and 3D collaborative filtering (BM3D) and the deep learning-based image processing methods. For images with rich textural details, the present method improves the clarity of the obtained images and the completeness of the edges, demonstrating its advantages in denoising and edge protection.
Alzheimer's disease (AD) symptoms are being treated by early diagnosis, where we can only slow the symptoms and research is still undergoing. In consideration, using T1-weighted images several classification models are proposed in Machine learning to identify AD. In this paper, we consider the improvised feature selection, to reduce the complexity by using wrapping techniques and Restricted Boltzmann Machine (RBM). This present work used the subcortical and cortical features of 278 subjects from the ADNI dataset to identify AD and sMRI. Multi-class classification is used for the experiment i.e., AD, EMCI, LMCI, HC. The proposed feature selection consists of Forward feature selection, Backward feature selection, and Combined PCA & RBM. Forward and backward feature selection methods use an iterative method starting being no features in the forward feature selection and backward feature selection with all features included in the technique. PCA is used to reduce the dimensions and RBM is used to select the best feature without interpreting the features. We have compared the three models with PCA to analysis. The following experiment shows that combined PCA &RBM, and backward feature selection give the best accuracy with respective classification model RF i.e., 88.65, 88.56% respectively.
Seoyeon Kim;Jinman Jung;Bongjae Kim;Young-Sun Yoon;Joonhyouk Jang
Smart Media Journal
/
v.11
no.11
/
pp.32-39
/
2022
As IoT applications that provide AI services increase, various hardware and software that support autonomous learning and inference are being developed. However, as the characteristics and constraints of each hardware increase difficulties in developing IoT applications, the development of an integrated platform is required. In this paper, we propose a tool for automatically generating components based on artificial neural networks and spiking neural networks as well as IoT technologies to be compatible with open platforms. The proposed component automatic generation tool supports the creation of components considering the characteristics of various hardware devices through the virtual component layer of IoT and AI and enables automatic application to open platforms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.