• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.031 seconds

Comparison of Fine Grained Classification of Pet Images Using Image Processing and CNN (영상 처리와 CNN을 이용한 애완동물 영상 세부 분류 비교)

  • Kim, Jihae;Go, Jeonghwan;Kwon, Cheolhee
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.175-183
    • /
    • 2021
  • The study of the fine grained classification of images continues to develop, but the study of object recognition for animals with polymorphic properties is proceeding slowly. Using only pet images corresponding to dogs and cats, this paper aims to compare methods using image processing and methods using deep learning among methods of classifying species of animals, which are fine grained classifications. In this paper, Grab-cut algorithm is used for object segmentation by method using image processing, and method using Fisher Vector for image encoding is proposed. Other methods used deep learning, which has achieved good results in various fields through machine learning, and among them, Convolutional Neural Network (CNN), which showed outstanding performance in image recognition, and Tensorflow, an open-source-based deep learning framework provided by Google. For each method proposed, 37 kinds of pet images, a total of 7,390 pages, were tested to verify and compare their effects.

An Explorative Case Study of Flipped College General English Class (대학 일반영어 플립드 러닝 수업 방식의 탐색적 사례연구)

  • Kim, Young-hee
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.5
    • /
    • pp.259-271
    • /
    • 2019
  • The purpose of this study is to examine the potential of flip learning in Korea and to explore the possibilities of university English education. To this end, participants are sought for classes wherein general English class is taught and the researcher is in charge of teaching. 25 students of media-English class is chosen for the study. Instruments for the study include class evaluation and feedbacks, mid-term and final exams, group performative evaluation, on-line class views and participations. The findings of the study are: As students progress in flipped learning classes, their exam results significantly improved, and their performative evaluation results also improved significant across different groups. The effects are more eminent among higher levels of students, but students with mid and low level of English still improved significantly once they engage themselves in preview activity on a regular basis and self-directedly.

AR Tourism Service Framework Using YOLOv3 Object Detection (YOLOv3 객체 검출을 이용한 AR 관광 서비스 프레임워크)

  • Kim, In-Seon;Jeong, Chi-Seo;Jung, Kye-Dong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.195-200
    • /
    • 2021
  • With the development of transportation and mobiles demand for tourism travel is increasing and related industries are also developing significantly. The combination of augmented reality and tourism contents one of the areas of digital media technology, is also actively being studied, and artificial intelligence is already combined with the tourism industry in various directions, enriching tourists' travel experiences. In this paper, we propose a system that scans miniature models produced by reducing tourist areas, finds the relevant tourist sites based on models learned using deep learning in advance, and provides relevant information and 3D models as AR services. Because model learning and object detection are carried out using YOLOv3 neural networks, one of various deep learning neural networks, object detection can be performed at a fast rate to provide real-time service.

Information-Based Urban Regeneration for Smart Education Community (스마트 교육 커뮤니티 정보기반 도시재생)

  • Kimm, Woo-Young;Seo, Boong-Kyo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.12
    • /
    • pp.13-20
    • /
    • 2018
  • This research is to analyze the public cases of information facilities in terms of central circulations in multi level volumes such as atrium or court which provide visual intervention between different spaces and physical connections such as bridges. Hunt Library design balances the understood pre-existing needs with the University's emerging needs to create a forward-thinking learning environment. While clearly a contemporary structure within a traditional context of the NCSU campus, the Hunt Library provides a positive platform for influencing its surroundings. Both technical and programmatic innovations are celebrated as part of the learning experience and provide a versatile and stimulating environment for students. Public library as open spaces connecting to an interactive social domain over communities can provide variety of learning environments, or technology based labs. There are many cases of the public information spaces with dynamic networks where participants can play their roles in physical space as well as in the intellectual stimulation. In the research, new public projects provide typologies of information spaces with user oriented media. The research is to address a creative transition between the reading space and the experimental links of the integration of state-of-the-art technology is highly visible in the building's design. The user-friendly browsing system that replaces the traditional browsing with the virtual shelves classified and archived by their form, is to reduce the storage space of the public library and it is to allow more space for collaborative learning. In addition to the intelligent robot of information storages, innovative features is the large-scale visualization space that supports team experiments to carry out collaborative online works and therefore the public library's various programs is to provide visitors with more efficient participatory environment.

Analyzing Media Bias in News Articles Using RNN and CNN (순환 신경망과 합성곱 신경망을 이용한 뉴스 기사 편향도 분석)

  • Oh, Seungbin;Kim, Hyunmin;Kim, Seungjae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.999-1005
    • /
    • 2020
  • While search portals' 'Portal News' account for the largest portion of aggregated news outlet, its neutrality as an outlet is questionable. This is because news aggregation may lead to prejudiced information consumption by recommending biased news articles. In this paper we introduce a new method of measuring political bias of news articles by using deep learning. It can provide its readers with insights on critical thinking. For this method, we build the dataset for deep learning by analyzing articles' bias from keywords, sourced from the National Assembly proceedings, and assigning bias to said keywords. Based on these data, news article bias is calculated by applying deep learning with a combination of Convolution Neural Network and Recurrent Neural Network. Using this method, 95.6% of sentences are correctly distinguished as either conservative or progressive-biased; on the entire article, the accuracy is 46.0%. This enables analyzing any articles' bias between conservative and progressive unlike previous methods that were limited on article subjects.

Deep Learning Based On-Device Augmented Reality System using Multiple Images (다중영상을 이용한 딥러닝 기반 온디바이스 증강현실 시스템)

  • Jeong, Taehyeon;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.341-350
    • /
    • 2022
  • In this paper, we propose a deep learning based on-device augmented reality (AR) system in which multiple input images are used to implement the correct occlusion in a real environment. The proposed system is composed of three technical steps; camera pose estimation, depth estimation, and object augmentation. Each step employs various mobile frameworks to optimize the processing on the on-device environment. Firstly, in the camera pose estimation stage, the massive computation involved in feature extraction is parallelized using OpenCL which is the GPU parallelization framework. Next, in depth estimation, monocular and multiple image-based depth image inference is accelerated using the mobile deep learning framework, i.e. TensorFlow Lite. Finally, object augmentation and occlusion handling are performed on the OpenGL ES mobile graphics framework. The proposed augmented reality system is implemented as an application in the Android environment. We evaluate the performance of the proposed system in terms of augmentation accuracy and the processing time in the mobile as well as PC environments.

A Bubble Detection Method for Conformal Coated PCB Using Transfer Learning based CNN (전이학습 기반의 CNN을 이용한 컨포멀 코팅 PCB에 발생한 기포 검출 방법)

  • Lee, Dong Hee;Cho, SungRyung;Jung, Kyeong-Hoon;Kang, Dong Wook
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.809-812
    • /
    • 2021
  • Air bubbles which may be generated during the PCB coating process can be a major cause of malfunction. so it is necessary to detect the bubbles in advance. In previous studies, candidates for bubbles were extracted using the brightness characteristics of bubbles, and the candidates were verified using CNN(Convolutional Neural Networks). In this paper, we propose a bubble detection method using a transfer learning-based CNN model. The VGGNet is adopted and sigmoid is used as a classification layer, and the last convolutional layer and classification layer are trained together when transfer learning is applied. The performance of the proposed method is F1-score 0.9044, which shows an improvement of about 0.17 compared to the previous study.

Algorithm for Improving Visibility under Ambient Lighting Using Deep Learning (딥러닝을 이용한 외부 조도 아래에서의 시인성 향상 알고리즘)

  • Lee, Hee Jin;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.808-811
    • /
    • 2022
  • Display under strong ambient lighting is perceived darker than it really is. Existing techniques for solving the problem in terms of software show limitations in that image enhancement techniques are applied regardless of ambient lighting or chrominance is not improved compared to luminance. Therefore, this paper proposes a visibility enhancement algorithm using deep learning to adaptively respond to ambient lighting values and an equation to restore optimal chrominance for luminance. The algorithm receives an ambient lighting value with the input image, and then applies a deep learning model and chrominance restoration equation to generate an image to minimize the difference between the degradation modeling of enhanced image and the input image. Qualitative evaluation proves that the algorithm shows excellent performance in improving visibility under strong ambient lighting through comparison of images applied with degradation modeling.

Machine Parts(O-Ring) Defect Detection Using Adaptive Binarization and Convex Hull Method Based on Deep Learning (적응형 이진화와 컨벡스 헐 기법을 적용한 심층학습 기반 기계부품(오링) 불량 판별)

  • Kim, Hyun-Tae;Seong, Eun-San
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1853-1858
    • /
    • 2021
  • O-rings fill the gaps between mechanical parts. Until now, the sorting of defective products has been performed visually and manually, so classification errors often occur. Therefore, a camera-based defect classification system without human intervention is required. However, a binarization process is required to separate the required region from the background in the camera input image. In this paper, an adaptive binarization technique that considers the surrounding pixel values is applied to solve the problem that single-threshold binarization is difficult to apply due to factors such as changes in ambient lighting or reflections. In addition, the convex hull technique is also applied to compensate for the missing pixel part. And the learning model to be applied to the separated region applies the residual error-based deep learning neural network model, which is advantageous when the defective characteristic is non-linear. It is suggested that the proposed system through experiments can be applied to the automation of O-ring defect detection.

A Study on the Development of Content Components in Information Literacy Textbooks: Focusing on the internal coherence of the learning contents (정보활용교육 관련 교과서류의 내용 요소 전개에 관한 연구 - 학습 내용의 내재적 통일성을 중심으로 -)

  • Byoung-Moon So
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.4
    • /
    • pp.25-44
    • /
    • 2022
  • The purpose of this study is to examine how the content components of information literacy textbooks develop and is to find implications for improving of textbook publication. Three kinds of information literacy textbooks were published sequentially over time. The content components of 『Information and media』(1996) and 『Library and information skills』(2011) are processed by filament structure and 『Information and library』(2002) has a topic-driven project activity. Generally, a small lesson unit of the textbook consisted of three components (learning goals, learning contents, learning activities) and each component in the unit have to make semantic close relationships. However, in some information literacy textbooks, there are cases that the semantic relationship between goals, contents, and activities are cut off. This disconnection cases can be a fatal drawback for the reliability of textbooks, so sufficient attention is needed to develop information literacy textbooks later.