• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.023 seconds

Deepfake Detection using Supervised Temporal Feature Extraction model and LSTM (지도 학습한 시계열적 특징 추출 모델과 LSTM을 활용한 딥페이크 판별 방법)

  • Lee, Chunghwan;Kim, Jaihoon;Yoon, Kijung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.91-94
    • /
    • 2021
  • As deep learning technologies becoming developed, realistic fake videos synthesized by deep learning models called "Deepfake" videos became even more difficult to distinguish from original videos. As fake news or Deepfake blackmailing are causing confusion and serious problems, this paper suggests a novel model detecting Deepfake videos. We chose Residual Convolutional Neural Network (Resnet50) as an extraction model and Long Short-Term Memory (LSTM) which is a form of Recurrent Neural Network (RNN) as a classification model. We adopted cosine similarity with hinge loss to train our extraction model in embedding the features of Deepfake and original video. The result in this paper demonstrates that temporal features in the videos are essential for detecting Deepfake videos.

  • PDF

Motion Detection and Classification Using Deep Learning (딥 러닝을 사용한 동작 감지 및 분류)

  • Kim, Jiwoon;Kim, Dahui;Kim, Dong Hyun;Jang, Seung Soon;Cho, Hee Je;Han, Yeoung Jin;Kim, Jeongchang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.205-207
    • /
    • 2021
  • 본 논문에서는 딥러닝 (deeo learning)을 이용하여 x, y, z 세 축의 가속도계 측정 값을 이용하여 5가지 동작을 분류하고, 5가지의 동작이 아닌 다른 동작이 들어왔을 때 아닌 동작이라 판단할 수 있는 알고리즘을 제시한다. 제안하는 알고리즘으로는 동작 데이터 각 샘플 마다의 동작을 분류한 개별 판단을 적용하여 5가지 동작을 분류하고 5가지 동작이 아닌 다른 동작이 들어왔을 때 검출하도록 한다.

  • PDF

Intra-Class Random Erasing (ICRE) augmentation for audio classification

  • Kumar, Teerath;Park, Jinbae;Bae, Sung-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.244-247
    • /
    • 2020
  • Data augmentation has been helpful in improving the performance in deep learning, when we have a limited data and random erasing is one of the augmentations that have shown impressive performance in deep learning in multiple domains. But the main issue is that sometime it loses good features when randomly selected region is erased by some random values, that does not improve performance as it should. We target that problem in way that good features should not be lost and also want random erasing at the same time. For that purpose, we introduce new augmentation technique named Intra-Class Random Erasing (ICRE) that focuses on data to learn robust features of the same class samples by randomly exchanging randomly selected region. We perform multiple experiments by using different models including resnet18, VGG16 over variety of the datasets including ESC10, UrbanSound8K. Our approach has shown effectiveness over others methods including random erasing.

  • PDF

Improvement of Detection Performance of Aerobic Exercises Using Machine Learning (머신 러닝 기반의 유산소 운동 검출 성능 개선)

  • Kim, Jiwoon;Kim, Dahui;Cha, Eunyoung;Kim, Jeongchang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.290-292
    • /
    • 2021
  • 본 논문에서는 머신 러닝 (machine learning)을 이용하여 x, y, z 세 축의 가속도계 측정 값을 이용하여 5 가지 유산소 운동을 분류하는 알고리즘을 제시한다. 제안하는 알고리즘으로는 운동 데이터 각 샘플 마다 운동을 분류한 개별 판단, 판단된 데이터 샘플을 그룹 지어 판단하는 다수결 판단, 각 데이터 샘플의 분류하여 확률을 결합하는 확률 누적 판단이 있으며 이를 적용하여 5 가지 유산소 운동을 분류하고 성능을 비교한다.

  • PDF

Music Composition with Collaboratory AI Composers

  • Kim, Haekwang;You, Younghwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.23-25
    • /
    • 2021
  • This paper describes an approach of composing music with multiple AI composers. This approach enriches more the creativity space of artificial intelligence music composition than using only one composer. This paper presents a simple example with 2 different deep learning composers working together for composing one music. For the experiment, the two composers adopt the same deep learning architecture of an LSTM model trained with different data. The output of a composer is a sequence of notes. Each composer alternatively appends its output to the resulting music which is input to both the composers. Experiments compare different music generated by the proposed multiple composer approach with the traditional one composer approach.

  • PDF

Face Super Resolution using Self-Supervised Learning (자기 지도 학습을 통한 고해상도 얼굴 영상 복원)

  • Jo, Byung-Ho;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.724-726
    • /
    • 2020
  • 본 논문에서는 GAN 과 자기 지도 학습(self-supervised learning)을 통해 입력 얼굴 영상의 공간 해상도를 4 배 증가시키는 기법을 제안한다. 제안하는 기법은 변형된 StarGAN v2 구조의 생성자와 구분자를 사용하여 저해상도의 입력 영상만을 가지고 학습 과정을 거쳐 고해상도 영상을 복원하도록 자기 지도 학습을 수행한다. 제안하는 기법은 복원된 영상과 고해상도 영상 간의 손실을 줄이는 지도 학습이 가지고 있는 단점을 극복하고 입력 영상만을 가지고 영상 내부에 존재하는 특징을 학습하여 얼굴 영상에 대한 고해상도 영상을 복원한다. 제안하는 기법과 Bicubic 보간법과의 비교를 통해 우수성을 검증한다.

  • PDF

Self-Supervised Spatiotemporal Learning For Video Using Variable Rotate Angle And Speed Prediction (비디오에서의 다양한 회전 각도와 회전 속도를 사용한 시 공간 자기 지도학습)

  • Kim, Taehoon;Hwang, Wonjun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.732-735
    • /
    • 2020
  • 기존에 지도학습 방법은 성능은 좋지만, 학습할 때 비디오 데이터와 정답 라벨이 있어야 한다. 그러나 이러한 데이터의 라벨을 수동으로 붙여줘야 하는 문제점과 그에 필요한 시간과 돈이 크다는 것이다. 이러한 문제점을 해결하기 위한 다양한 방법 중 자기지도학습(Self-Supervised Learning) 중 하나인 회전 방법을 비디오 데이터에 적용하여 학습하는 연구를 진행하였다. 본 연구에서는 두가지 방법을 제안한다. 먼저 기존의 비디오 데이터를 입력으로 받으면 단순히 비디오 자체를 회전시키는 것이 아닌 입력으로 들어온 비디오의 각각 프레임이 시간이 지나면서 일정한 속도로 회전을 시킨다. 이때의 회전은 총 네 가지 각도[0, 90, 180, 270]를 분류하도록 하는 방법론이다. 두 번째로 비디오의 프레임이 시간이 지나면서 변할 때 프레임 별로 고정된 각도로 회전시키는데 이때 회전하는 속도 네 가지 [1x, 0.5x, 0.25x, 0.125]를 분류하도록 하는 방법론이다. 이와 같은 제안하는 pretext task들을 통해 네트워크를 학습한 뒤, 학습된 모델을 fine tune 시켜 비디오 분류에 대한 실험을 수행 및 결과를 도출하였다.

  • PDF

Deep Learning-Based Detection of Cell ID of 5G NR (딥러닝을 이용한 5G NR 의 Cell ID 검출 기법)

  • Cha, Eunyoung;Ahn, Haesung;Kim, Hyeongseok;Kim, Jeongchang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.634-636
    • /
    • 2020
  • 본 논문에서는 딥러닝 (deep learning) 방식을 이용한 5G NR (fifth-generation new radio)의 cell ID (cell identity) 검출 기법을 구현하였다. 5G NR 시스템의 단말 (user equipment)은 초기 접속 (initial access)과정에서 PSS (primary synchronization signal)와 SSS (secondary synchronization signal)을 이용한 동기 획득 및 cell ID 검출이 필요하다. 본 논문에서는 분류 기법 기반의 딥러닝 기술을 이용하여 인공 신경망 모델에 PSS 및 SSS 와 cell ID 의 상관 관계를 학습시키고, 학습된 모델의 성능을 제시하였다.

  • PDF

Training Optimization for Fringe Pattern Generation Network Based on Deep Learning (딥러닝 기반의 프린지 패턴 생성 네트워크 학습에 대한 최적화)

  • Park, Sun-Jong;Kim, Woosuk;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.858-859
    • /
    • 2022
  • 본 논문에서는 프린지 패턴을 생성하는 딥러닝 기반의 WGAN-GP 네트워크의 최적화 방법을 제안한다. 기존의 복소 프린지 패턴 생성을 위한 GAN 모델은 생성의 정확도뿐만 아니라 학습의 안정성이 다소 부족하였다. 이에 따라 WGAN-GP 등의 업그레이드 된 방법을 사용하였지만, 네트워크 구조 및 파라미터에 따른 최적화가 필요하다. 보다 정확도 높은 정확도를 가진 프린지 패턴 생성을 위해 learning rate decay 사용하여 학습된 결과를 epoch 별 그래프로 최적화 전의 결과와 비교하고, 홀로그램과 복원 결과에 대한 PSNR 을 비교한다.

  • PDF

Autism Spectrum Disorder Recognition with Deep Learning

  • Shin, Jongmin;Choi, Jinwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1268-1271
    • /
    • 2022
  • Since it is common to have touch-screen devices, it is less challenging to draw sketches anywhere and save them in vector form. Current research on sketches considers coordinate sequence data and adopts sequential models for learning sketch representation in sketch understanding. In the sketch dataset, it has become customary that the dataset is in vector coordinate format. Moreover, the popular dataset does not consider real-life sketches, sketches from pencil, pen, and paper. Art psychology uses real-life sketches to analyze patients. ETRI presents a unique sketch dataset for sketch recognition of autism spectrum disorder in pixel format. We present a method to formulate the dataset for better generalization of sketch data. Through experiments, we show that pixel-based models can produce a good performance.

  • PDF