Hippocampus is a complex brain structure embedded deep into the temporal lobe. Studies have shown that this structure gets affected by neurological and psychiatric disorders and it is a significant landmark for diagnosing neurodegenerative diseases. Hippocampus features play very significant roles in region-of-interest based analysis for disease diagnosis and prognosis. In this study, we have attempted to learn the embeddings of this important biomarker. As conventional metric learning methods for feature embedding is known to lacking in capturing semantic similarity among the data under study, we have trained deep Siamese convolutional neural network for learning metric of the hippocampus. We have exploited Gwangju Alzheimer's and Related Dementia cohort data set in our study. The input to the network was pairs of three-view patches (TVPs) of size 32 × 32 × 3. The positive samples were taken from the vicinity of a specified landmark for the hippocampus and negative samples were taken from random locations of the brain excluding hippocampi regions. We have achieved 98.72% accuracy in verifying hippocampus TVPs.
Astronomy is a popular topic for the public in term of astronomical phenomenon such as occultations, solar and lunar eclipses or meteor showers. In term of education, astronomy also is popular as one of the world Science Olympiads. Social media, as the new trend in communicating and connecting people, plays a significant role in increasing the size of the astronomy community. Beyond IYA 2009, more and more astronomy activities have been done in many places in Indonesia. New astronomy communities have been formed in several cities and public engagement is also high in social media especially on Facebook and Twitter. In this paper, we will discuss the lesson learned from astronomy outreach achievements in Indonesia and the need for citizen science projects as a distance learning tool for the public as part of astronomy development in Indonesia. We argue and propose that this project will be also important up to a regional scope.
There are many studies on red tide due to the continuous increase in damage to domestic fish and shell farms by the harmful red tide. However, there is insufficient domestic research of identifying harmful red tide algae that automatically recognizes red tide images. In this paper, we propose a red tide image classification method using deep learning based open source. To solve the problem of recognition of various images of red tide algae, the proposed method is implemented by using tensorflow framework and Google image classification model.
In this paper, we propose the design and implementation of Multi-media Title for the similar figure learning. The algebra problems of mathematics are usually solved by algorithm, but the diagram problems of geometry have various solution methods. This made us educate the students by memorizing the principle and property of diagram. In this paper, we applied the courseware to the students and analyzed the result. Therefore we could notice the possibilities, "f we teach students by using the courseware, we can improve their learning achievement."
In recent years, falls among elderly people have gained serious attention as a major cause of injuries. Falls often lead to fatal consequences due to lack of prompt response and rescue. Therefore, a more accurate fall detection system and an effective feature extraction technique are required to prevent and reduce the risk of such incidents. In this paper, we proposed an efficient feature extraction technique based on multiple sliding windows and validated it through a series of experiments using supervised learning algorithms. The experiments were conducted using the public datasets obtained from tri-axial accelerometers. The results depicted that extraction of the feature from adjacent sliding windows led to high accuracy in supervised machine learning-based fall detection. Also, the experiments conducted in this study suggested that the best accuracy can be achieved by keeping the window size as small as 2 seconds. With the kNN classifier and dataset from wearable sensors, the experiments achieved accuracy rates of 94%.
Basically, machine learning models use input data to produce results. Sometimes, the input data is too complicated for the models to learn useful patterns. Therefore, feature engineering is a crucial data preprocessing step for constructing a proper feature set to improve the performance of such models. One of the most efficient methods for automating feature engineering is the autoencoder, which transforms the data from its original space into a latent space. However certain factors, including the datasets, the machine learning models, and the number of dimensions of the latent space (denoted by k), should be carefully considered when using the autoencoder. In this study, we design a framework to compare two data preprocessing approaches: with and without autoencoder and to observe the impact of these factors on autoencoder. We then conduct experiments using autoencoders with classifiers on popular datasets. The empirical results provide a perspective regarding the best suited autoencoder for these factors.
International Journal of Advanced Culture Technology
/
v.10
no.2
/
pp.98-105
/
2022
This study's purpose is to suggest a pedagogical method based on using animated movie in liberal arts English classes and to examine the direction that using animated movie as learning material should take. To this end, in this study, the content understanding and expression concentration stages using animated movie are presented. After students learned in class through animated movie, two tests were conducted to investigate the change in learners' acquisition of English expressions. As a result, subjects' learning of English expressions showed a significant improvement over time. An open-ended questionnaire was also conducted to ascertain learners' satisfaction level and their perceptions of classes using animated movie, with learners' satisfaction found to be high overall (77.1%). Students identified the reasons for their high satisfaction rate as the following: "fun and a touching story", "beneficial composition of textbooks", "efficient teaching methods", "sympathetic topics", and "appropriate difficulty". When using video media in class, instructors should maximize and leverage the advantages of video media, which are rich both in context and in their linguistic aspects.
HAR(Human Action Recognition) such as anomaly and object detection has become a trend in research field(s) that focus on utilizing Artificial Intelligence (AI) methods to analyze patterns of human action in crime-ridden area(s), media services, and industrial facilities. Especially, in real-time system(s) using video streaming data, HAR has become a more important AI-based research field in application development and many different research fields using HAR have currently been developed and improved. In this paper, we propose and analyze a deep-learning-based HAR that provides more efficient scheme(s) using an intelligent AI models, such system can be applied to media services using RGB video streaming data usage without feature extraction pre-processing. For the method, we adopt Slowfast based on the Deep Neural Network(DNN) model under an open dataset(HMDB-51 or UCF101) for improvement in prediction accuracy.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.1
/
pp.305-318
/
2022
Abusive behaviors have become a common issue in many online social media platforms. Profanity is common form of abusive behavior in online. Social media platforms operate the filtering system using popular profanity words lists, but this method has drawbacks that it can be bypassed using an altered form and it can detect normal sentences as profanity. Especially in Korean language, the syllable is composed of graphemes and words are composed of multiple syllables, it can be decomposed into graphemes without impairing the transmission of meaning, and the form of a profane word can be seen as a different meaning in a sentence. This work focuses on the problem of filtering system mis-detecting normal phrases with profane phrases. For that, we proposed the deep learning-based framework including grapheme and syllable separation-based word embedding and appropriate CNN structure. The proposed model was evaluated on the chatting contents from the one of the famous online games in South Korea and generated 90.4% accuracy.
Harvest forecasting is the great demand of multiple aspects like temperature, rain, environment, and their relations. The existing study investigates the climate conditions and aids the cultivators to know the harvest yields before planting in farms. The proposed study uses federated learning. In addition, the additional widespread techniques such as bagging classifier, extra tees classifier, linear discriminant analysis classifier, quadratic discriminant analysis classifier, stochastic gradient boosting classifier, blending models, random forest regressor, and AdaBoost are utilized together. These presented nine algorithms achieved exemplary satisfactory accuracies. The powerful contributions of proposed algorithms can create exact harvest forecasting. Ultimately, we intend to compare our study with the earlier research's results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.