• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.03 seconds

Detection of Frame Deletion Using Coding Pattern Analysis (부호화 패턴 분석을 이용한 동영상 삭제 검출 기법)

  • Hong, Jin Hyung;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.734-743
    • /
    • 2017
  • In this paper, we introduce a technique to detect the video forgery using coding pattern analysis. In the proposed method, the recently developed standard HEVC codec, which is expected to be widely used in the future, is used. First, HEVC coding patterns of the forged and the original videos are analyzed to select the discriminative features, and the selected feature vectors are learned through the machine learning technique to model the classification criteria between two groups. Experimental results show that the proposed method is more effective to detect frame deletions for HEVC-coded videos than existing works.

Proactive safety support system for vulnerable pedestrians using Deep learning method (보행취약자 보행안전을 위한 딥러닝 응용 기법)

  • Song, Hyok;Ko, Min-Soo;Yoo, Jisang;Choi, Byeongho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.107-108
    • /
    • 2017
  • 횡단보도 인근에서는 보행취약자의 사고가 끊이지 않고 있으며 사고예방 및 사고의 절감을 위하여 선제적안 안전시스템의 개발이 요구되고 있다. 선제적 안전시스템의 개발을 위하여 빅데이터를 이용한 안전 데이터 도출, 영상분석을 이용한 보행자 행동특성 모니터링 시스템의 개발 및 사고감소를 위한 안전 시스템 개발이 진행되고 있다. 보행취약자 위험상황 판단에 대한 정의를 빅데이터 분석을 통해 도출하고 횡단보도 주변 안전 시스템의 개발을 기존 시스템에 적용 및 새로운 시스템을 개발하며 이에 적합한 딥러닝 영상분석 시스템을 개발하였다. 본 논문에서는 딥러닝 모델을 이용하여 객체의 검출, 분석을 수행하는 객체 검출부, 객체의 포즈와 행동을 보여주는 영상 분석부로 구성되어 있으며 기존 모델을 응용하여 최적화한 모델을 적용하였다. 딥러닝 모델의 구동은 리눅스 서버에서 운용되고 있으며 딥러닝 모델 구동을 위한 여러 툴을 적용하였다. 본 연구를 통하여 보행취약자의 검출, 추적, 보행취약자의 포즈 및 위험상황을 인식하고 안전시스템과 연계할 수 있도록 구성하였다.

  • PDF

Broadcasting Software System for Interactive Service based on Deep Learning (차세대 딥러닝 인공지능을 이용한 양방향 서비스 방송 소프트웨어 시스템)

  • Yang, Geunseok;Shin, Yongwoo;Roh, Minchul;Kang, Seongho;Joo, Ingyu;Kwak, Jaechul;Ku, Jinwon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.26-28
    • /
    • 2017
  • 스마트폰 보유율과 모바일 이용 행태가 급변함에 따라 방송사에서는 양방향 서비스를 포함한 다양한 방송 서비스를 제공하려고 노력하고 있다. 양방향 서비스 방송에서 시청자가 보낸 문구를 실제 화면에 보여주기까지 PD 와 담당자들의 수작업이 필요하다. 하지만 하루 평균 약 7,200 건 (MBC 오늘아침 소통중계)의 양방향 서비스 관련 로그가 남게 되어, PD 가 일일이 판별하기에는 많은 노력이 따른다. 이러한 불필요한 노력을 줄이기 위해 본 논문에서는 감정 분석을 이용한 딥러닝 인공지능 기반 양방향 서비스 방송 소프트웨어 시스템을 제안한다. 첫째, 시청자들이 전송한 의견, 건의사항, 내용 등을 전처리 과정을 진행한다. 둘째, 감정 사전을 이용해 전처리 된 단어와 비교하여 시청자가 보낸 문구의 감정 점수를 계산한다. 셋째, 과거 실제 방송에 송출된 시청자 문구를 감정 점수와 함께 딥러닝을 이용하여 훈련시킨다. 본 논문의 성능을 평가하기 위해, 2017 년 생방송 오늘아침 소통중계에 사례연구를 진행하였고 효율성을 보였다. 앞으로 이러한 양방향 서비스 방송 소프트웨어 시스템 도입으로, PD 가 방송 제작에 더욱 집중 할 수 있도록 차별화된 방송을 준비하는데 크게 기여할 것이라 기대한다.

  • PDF

Single Image Super-Resolution Using Multi-Layer Linear Mappings (다층 선형 매핑 기반 단일영상 초해상화 기법)

  • Choi, Jae-Seok;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.9-11
    • /
    • 2016
  • 최근 UHDTV(ultra high definition television) 등의 고해상도 디스플레이가 시장에 등장하면서, 기존의 저해상도 FHD(full high definition) 영상을 고해상도 영상으로 변환할 수 있는 초해상화(super-resolution, SR) 기법들이 각광을 받고 있다. 그 중, 선형 매핑(linear mapping)을 사용하여 저해상도 패치(patch)로부터 고해상도 패치를 복원하는 초해상화 기법은 상대적으로 낮은 복잡도로 좋은 품질의 고해상도 영상을 생성한다. 그러나 이러한 기법은 단순한 선형 매핑을 기반으로 하기 때문에 복잡한 비선형적(nonlinear) 저해상도-고해상도 관계를 예측하기 힘든 단점이 있다. 최근 각광받는 딥러닝(deep learning) 기술은 다층(multi-layer) 네트워크를 쌓아 입력과 출력 간의 복잡한 비선형 관계를 훈련시켜 좋은 성능을 보이는데, 이를 바탕으로 본 논문에서는 다중의 레이어로 구성된 다층 선형 매핑(multi-layer linear mappings, MLLM)을 기반으로 하는 초해상화 기법을 새롭게 제안한다. 제안하는 다층 선형 매핑은 기존 선형 매핑보다 비선형적 관계를 더 잘 예측하여 높은 품질의 고해상도 영상을 생성할 수 있게 한다. 제안된 초해상화 기법은 딥러닝 기반 초해상화 기법과 필적하는 품질의 고해상도 영상을 생성하면서도 더 낮은 복잡도를 지니는 것을 확인하였다.

  • PDF

User Identification Method using Palm Creases and Veins based on Deep Learning (손금과 손바닥 정맥을 함께 이용한 심층 신경망 기반 사용자 인식)

  • Kim, Seulbeen;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.395-402
    • /
    • 2018
  • Human palms contain discriminative features for proving the identity of each person. In this paper, we present a novel method for user verification based on palmprints and palm veins. Specifically, the region of interest (ROI) is first determined to be forced to include the maximum amount of information with respect to underlying structures of a given palm image. The extracted ROI is subsequently enhanced by directional patterns and statistical characteristics of intensities. For multispectral palm images, each of convolutional neural networks (CNNs) is independently trained. In a spirit of ensemble, we finally combine network outputs to compute the probability of a given ROI image for determining the identity. Based on various experiments, we confirm that the proposed ensemble method is effective for user verification with palmprints and palm veins.

Deep Learning Algorithm to Identify Cancer Pictures (딥러닝 기반 암세포 사진 분류 알고리즘)

  • Seo, Young-Min;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.669-681
    • /
    • 2018
  • CNN (Convolution Neural Network) is one of the most important techniques to identify the kind of objects in the captured pictures. Whereas the conventional models have been used for low resolution images, the technique to recognize the high resolution images becomes crucial in the field of artificial intelligence. In this paper, we proposed an efficient CNN model based on dilated convolution and thresholding techniques to increase the recognition ratio and to decrease the computational complexity. The simulation results show that the proposed algorithm outperforms the conventional method and the thresholding technique enhances the performance of the proposed model.

Prospect of u-Learning based on consilience communication aspect between humans and media (인간과 매체 간 통섭적 커뮤니케이션 관점에 근거한 유러닝의 전망)

  • Moon, Chang-Bae;Park, Jung-Hwan;Cho, Jung-won;Ma, Ji-Sun;Kang, Young-Sik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.700-703
    • /
    • 2010
  • 통합학문을 구성해야 한다는 시대적 요구가 점차 많아지고 있다. 이러한 요구는 둘 이상의 학문이 융합하여 시너지의 효과를 발생하거나 창의적인 문제해결 혹은 그 이상의 새로운 결과물을 창출하는 목적을 가지고 있다. 이는 궁극적으로 합침을 통하여 전혀 다른 새로운 것을 지향하는 통섭을 목적으로 하고 있다고 볼 수 있다. 교수 학습은 교수자와 학습자의 커뮤니케이션 과정이며 교사와 학생간의 원활한 커뮤니케이션이 이루어지지 않고는 교육의 본질적 목표를 달성하기 어렵다. 교수 학습의 연결은 커뮤니케이션이며, 이를 효율적으로 실행 가능하게 해 주는 것이 매체라 할 수 있다. 교수자와 학습자의 관계를 이어주는 커뮤니케이션, 매체와 인간이 하나로 통섭되는 매체의 인간화, 매체를 통한 커뮤니케이션의 확장을 통하여 사용자와 매체, 사용자와 사용자, 매체와 매체의 상호작용이 이루어지게 된다. 본 연구에서는 이러한 측면에서 인간 매체 간 통섭적 커뮤니케이션에 근거한 유러닝을 전망해 봄으로써 학습자 중심의 교육을 실현하는 관점을 제시하고자 한다.

  • PDF

Predicting Health Communication Patterns in Follower-Influencer Networks: The Case of Taiwan Amid COVID-19

  • Chang, Angela;Jiao, Wen
    • Asian Journal for Public Opinion Research
    • /
    • v.8 no.3
    • /
    • pp.246-264
    • /
    • 2020
  • As netizens increasingly utilize social media to obtain and engage with information, this study aims to determine the extent to which the follower-influencer interaction is manifested and strengthened. To analyze information related to the novel coronavirus disease (COVID-19), a total of 62,119 online posts from 11 Internet forums were examined to find a relationship between followers and influencers in Taiwan. These forums are PTT, SOGO, Ck101, Plurk, Mobile01, TalkFetnet, Gamez, PlaySport, Dcard, Eyny, and PCDVD. The variables that were the best predictors of influencer classification were strong influences, engagements, and hot values across 11 Internet forums. Learning the response to the COVID-19 pandemic is vital because public actions could have been fueled by stigmatizing terms that may harm public health and well-being. The results questioned the conventional diffusion of traditional news sources because the influencers brought widespread attention to the health threat issues in the early outbreak stages. This study enhances the understanding of forum types, follower engagement, and influencers' impact maximization in social networks. The conclusion provides insight into the relationships and information diffusion mechanisms to ensure accurate health information dissemination.

Oriental Medical Approach to Attention-deficit/hyperactivity disorder(ADHD) (주의력결핍 과잉운동장애에 대한 한의학적 접근)

  • Chang Gyu-Tae
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.15 no.2
    • /
    • pp.141-165
    • /
    • 2001
  • Attention-deficit/hyperactivity disorder(ADHD) is one of the most common childhood-onset psychlatric disorders. It is distinguished by symptoms of inattention, hyperactivity, and impulsivity. ADHD may be accompanied by learning disabilities, depression, anxiety, conduct disorder, and oppositional defiant disorder. The etiology of ADHD is unknown, and the disorder may have several different causes. Individual with ADHD present in childhood and may continue to show symptoms as they enter adolescence and adult life. Public interest in ADHD has increased along with debate in the media concerning the diagnostic process and treatment strategies. The purpose of this study is oriental medical approach to ADHD. This study was progressed for oriental diagnosis and treatment for ADHD. In oriental medicine, the reason of ADHD was deficiency of the kidney, hyperactivity of the liver(腎虛肝亢), deficiency of the heart and the spleen(心脾不足), heart disturbed by phlegm and heat(痰熱擾心). The method of medical treatment was nourishing the kidney and checking exuberance of yang(滋腎潛陽), relieving mental stress and promoting wisdom(寧神益智), nourishing the heart and strengthening the spleen(養心健脾), tranquilzation(安神定志). removing heat-phlegm(淸熱化痰), inducing resuscitation and tranquilzation(開窮安神). The prescription was commonly used as Liuwei Dihuang Wan jiajian(六味地黃丸加減), Guipi Tang he Ganmai Dazao Tang jiajian(歸脾湯合甘麥大棗湯加減), Huanglian Wendan Tang jiawei(溫黃連溫膽湯加味). It should help primary care providers in their assessment of a common child health problem.

  • PDF

Speech Recognition Error Compensation using MFCC and LPC Feature Extraction Method (MFCC와 LPC 특징 추출 방법을 이용한 음성 인식 오류 보정)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.137-142
    • /
    • 2013
  • Speech recognition system is input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Therefore, in this paper, we propose a speech recognition error correction method using phoneme similarity rate and reliability measures based on the characteristics of the phonemes. Phonemes similarity rate was phoneme of learning model obtained used MFCC and LPC feature extraction method, measured with reliability rate. Minimize the error to be unrecognized by measuring the rate of similar phonemes and reliability. Turned out to error speech in the process of speech recognition was error compensation performed. In this paper, the result of applying the proposed system showed a recognition rate of 98.3%, error compensation rate 95.5% in the speech recognition.