• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.027 seconds

A Study on Reconstruction Performance of Phase-only Holograms with Varying Propagation Distance (전파 거리에 따른 위상 홀로그램 복원성능 분석 및 BL-ASM 개선 방안 연구)

  • Jun Yeong Cha;Hyun Min Ban;Seung Mi Choi;Jin Woong Kim;Hui Yong Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.3-20
    • /
    • 2023
  • A computer-generated hologram (CGH) is a digitally calculated and recorded hologram in which the amplitude and phase information of an image is transmitted in free space. The CGH is in the form of a complex hologram, but it is converted into a phase-only hologram to display through a phase-only spatial light modulator (SLM). In this paper, in the process of including the amplitude information of an object in the phase information, when a technique that includes subsampling such as DPAC is used, we showed experimentally that the bandwidth of the phase-only hologram increases, and as a result, aliasing that was not present in the complex hologram can occur. In addition, it was experimentally shown that it is possible to generate a high-quality phase-only hologram by restricting the spatial frequency range even at a distance where the numerical reconstruction performance is degraded by aliasing.

A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation (산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구)

  • Ran Hee Lee;Ki Tae Bae;Joon Hoi Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.120-128
    • /
    • 2023
  • There are various ICT technologies continuously being developed to reduce damage by industrial accidents. And research is being conducted to minimize damage in case of industrial accidents by utilizing sensors, IoT, big data, machine learning and artificial intelligence. In this paper, we propose a design method for a smart device capable of multilateral communication between devices and smart repeater in the communication shaded Areas such as closed areas of industrial sites, mountains, oceans, and coal mines. The proposed device collects worker's information such as worker location and movement speed, and environmental information such as terrain, wind direction, temperature, and humidity, and secures a safe distance between workers to warn in case of a dangerous situation and is designed to be attached to a helmet. For this, we proposed functional requirements for smart devices and design methods for implementing each requirement using sensors and modules in smart device. And we derived evaluation items for performance evaluation of the smart device and proposed an evaluation environment for performance evaluation in mountainous area.

Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose (OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교)

  • Nam Rye Son;Min A Jung
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.59-67
    • /
    • 2023
  • Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The collected dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.

A Study on the Generation of Webtoons through Fine-Tuning of Diffusion Models (확산모델의 미세조정을 통한 웹툰 생성연구)

  • Kyungho Yu;Hyungju Kim;Jeongin Kim;Chanjun Chun;Pankoo Kim
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.76-83
    • /
    • 2023
  • This study proposes a method to assist webtoon artists in the process of webtoon creation by utilizing a pretrained Text-to-Image model to generate webtoon images from text. The proposed approach involves fine-tuning a pretrained Stable Diffusion model using a webtoon dataset transformed into the desired webtoon style. The fine-tuning process, using LoRA technique, completes in a quick training time of approximately 4.5 hours with 30,000 steps. The generated images exhibit the representation of shapes and backgrounds based on the input text, resulting in the creation of webtoon-like images. Furthermore, the quantitative evaluation using the Inception score shows that the proposed method outperforms DCGAN-based Text-to-Image models. If webtoon artists adopt the proposed Text-to-Image model for webtoon creation, it is expected to significantly reduce the time required for the creative process.

Extended Knowledge Graph using Relation Modeling between Heterogeneous Data for Personalized Recommender Systems (이종 데이터 간 관계 모델링을 통한 개인화 추천 시스템의 지식 그래프 확장 기법)

  • SeungJoo Lee;Seokho Ahn;Euijong Lee;Young-Duk Seo
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.27-40
    • /
    • 2023
  • Many researchers have investigated ways to enhance recommender systems by integrating heterogeneous data to address the data sparsity problem. However, only a few studies have successfully integrated heterogeneous data using knowledge graph. Additionally, most of the knowledge graphs built in these studies only incorporate explicit relationships between entities and lack additional information. Therefore, we propose a method for expanding knowledge graphs by using deep learning to model latent relationships between heterogeneous data from multiple knowledge bases. Our extended knowledge graph enhances the quality of entity features and ultimately increases the accuracy of predicted user preferences. Experiments using real music data demonstrate that the expanded knowledge graph leads to an increase in recommendation accuracy when compared to the original knowledge graph.

Multi-Region based Radial GCN algorithm for Human action Recognition (행동인식을 위한 다중 영역 기반 방사형 GCN 알고리즘)

  • Jang, Han Byul;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.46-57
    • /
    • 2022
  • In this paper, multi-region based Radial Graph Convolutional Network (MRGCN) algorithm which can perform end-to-end action recognition using the optical flow and gradient of input image is described. Because this method does not use information of skeleton that is difficult to acquire and complicated to estimate, it can be used in general CCTV environment in which only video camera is used. The novelty of MRGCN is that it expresses the optical flow and gradient of the input image as directional histograms and then converts it into six feature vectors to reduce the amount of computational load and uses a newly developed radial type network model to hierarchically propagate the deformation and shape change of the human body in spatio-temporal space. Another important feature is that the data input areas are arranged being overlapped each other, so that information is not spatially disconnected among input nodes. As a result of performing MRGCN's action recognition performance evaluation experiment for 30 actions, it was possible to obtain Top-1 accuracy of 84.78%, which is superior to the existing GCN-based action recognition method using skeleton data as an input.

Research Trends and Datasets Review using Satellite Image (위성영상 이미지를 활용한 연구 동향 및 데이터셋 리뷰)

  • Kim, Se Hyoung;Chae, Jung Woo;Kang, Ju Young
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.17-30
    • /
    • 2022
  • Like other computer vision research trends, research using satellite images was able to achieve rapid growth with the development of GPU-based computer computing capabilities and deep learning methodologies related to image processing. As a result, satellite images are being used in various fields, and the number of studies on how to use satellite images is increasing. Therefore, in this paper, we will introduce the field of research and utilization of satellite images and datasets that can be used for research using satellite images. First, studies using satellite images were collected and classified according to the research method. It was largely classified into a Regression-based Approach and a Classification-based Approach, and the papers used by other methods were summarized. Next, the datasets used in studies using satellite images were summarized. This study proposes information on datasets and methods of use in research. In addition, it introduces how to organize and utilize domestic satellite image datasets that were recently opened by AI hub. In addition, I would like to briefly examine the limitations of satellite image-related research and future trends.

RoutingConvNet: A Light-weight Speech Emotion Recognition Model Based on Bidirectional MFCC (RoutingConvNet: 양방향 MFCC 기반 경량 음성감정인식 모델)

  • Hyun Taek Lim;Soo Hyung Kim;Guee Sang Lee;Hyung Jeong Yang
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.28-35
    • /
    • 2023
  • In this study, we propose a new light-weight model RoutingConvNet with fewer parameters to improve the applicability and practicality of speech emotion recognition. To reduce the number of learnable parameters, the proposed model connects bidirectional MFCCs on a channel-by-channel basis to learn long-term emotion dependence and extract contextual features. A light-weight deep CNN is constructed for low-level feature extraction, and self-attention is used to obtain information about channel and spatial signals in speech signals. In addition, we apply dynamic routing to improve the accuracy and construct a model that is robust to feature variations. The proposed model shows parameter reduction and accuracy improvement in the overall experiments of speech emotion datasets (EMO-DB, RAVDESS, and IEMOCAP), achieving 87.86%, 83.44%, and 66.06% accuracy respectively with about 156,000 parameters. In this study, we proposed a metric to calculate the trade-off between the number of parameters and accuracy for performance evaluation against light-weight.

Semantic Pre-training Methodology for Improving Text Summarization Quality (텍스트 요약 품질 향상을 위한 의미적 사전학습 방법론)

  • Mingyu Jeon;Namgyu Kim
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Recently, automatic text summarization, which automatically summarizes only meaningful information for users, is being studied steadily. Especially, research on text summarization using Transformer, an artificial neural network model, has been mainly conducted. Among various studies, the GSG method, which trains a model through sentence-by-sentence masking, has received the most attention. However, the traditional GSG has limitations in selecting a sentence to be masked based on the degree of overlap of tokens, not the meaning of a sentence. Therefore, in this study, in order to improve the quality of text summarization, we propose SbGSG (Semantic-based GSG) methodology that selects sentences to be masked by GSG considering the meaning of sentences. As a result of conducting an experiment using 370,000 news articles and 21,600 summaries and reports, it was confirmed that the proposed methodology, SbGSG, showed superior performance compared to the traditional GSG in terms of ROUGE and BERT Score.

Topic-oriented Liberal English Class Plan for Foreign Learners at University (대학생 외국인 학습자를 위한 주제 중심의 교양 영어 수업방안)

  • Kim Hye-Jeong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.111-117
    • /
    • 2023
  • The aim of this study is to present a practical teaching plan for liberal arts English classes that target foreign students. Foreign learners who do not have Korean language proficiency at the university level may struggle to understand the contents of liberal arts classes conducted by Korean language professors. In this study, six topics were selected (K-culture, Online game, Harry Potter, Disney, Marvel, DC) and topic-centered participatory class activities using various media were developed. A questionnaire was conducted to analyze learners' attitudes toward and perceptions regarding topic-oriented classes. It showed that learners' satisfaction with topic-based classes was high (75%), and the reasons for this high level of satisfaction were the instructors' caring attitudes, the comfortable class atmosphere, and the fun learners had in class. Learners also reported high satisfaction with various participatory class activities (81.9%), citing the learning benefits, their increased interest and motivation, and the efficiency of participatory classes. As globalization continues to increase the number of foreign students in South Korea, the need to develop realistic class plans and various class activities that are suitable for them is becoming more and more urgent.