• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.026 seconds

Hand-Object 3D Reconstruction Based on 2D Rendering (2D 렌더링 정보를 활용한 손-객체의 3D 복원)

  • Nam, Hyeongil;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.327-330
    • /
    • 2021
  • 본 논문은 RGB 영상 데이터셋의 일부만을 지도학습하여(Sparsely-supervised learning) Annotation 되지 않은 영상에 대해 손-객체의 3D 포즈를 복원하기 위한 방법을 제안한다. 기존의 연구에서는 손-객체의 포즈에 해당하는 6DoF 만을 학습 데이터로 활용한다. 이와 달리, 본 논문에서는 정확도 향상을 위해 복원된 결과를 동일한 입력 영상 내에서 비교 가능하도록 3D 모델로 복원한 결과를 입력 영상의 마스크로 만들어 학습에 반영하였다. 구체적으로 추정된 포즈로 만들어낸 마스크를 입력 영상에 적용한 결과와 Ground-truth 포즈를 적용한 영상을 학습 시에 손실 함수에 반영하였다. 비교 실험을 통해 제안된 방법이 해당 방법을 적용하지 않은 경우 보다 3D 매쉬 오차가 적었음을 확인할 수 있었다.

  • PDF

Member Verification with Deep Learning-based Image Descriptors (깊은 인공 신경망 이미지 기술자를 활용하는 멤버 분류)

  • Jang, Young Kyun;Lee, Seok Hee;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.36-39
    • /
    • 2020
  • 최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 복잡한 특징을 담고 있는 얼굴 이미지에 대해 이를 적용하려는 시도가 늘어나고 있다. 특히, 이미지로부터 주요한 특징들을 추출하여 간결하게 이미지를 대표할 수 있는 이미지 기술자 (Image descriptor)를 딥 러닝을 통해 생성하는 연구가 인기를 끌고 있다. 이는 딥 러닝 끝 단에 있는 Fully-connected layer 의 출력으로 얻을 수 있으며 이미지의 의미론적 상관관계를 이용하여 학습된다. 구체적으로, 이미지 기술자는 실수형 벡터 데이터로서, 한 장의 이미지를 수치화 하여 비슷한 이미지 사이에는 벡터 거리가 가깝게, 서로 다른 이미지 사이에는 벡터 거리가 멀게 구성된다. 본 연구에서는 미리 학습된 인공 신경망을 통과시켜 얻은 얼굴 이미지 기술자를 활용하여 멤버 분류를 위한 두 개의 인공 신경망을 학습하는 것을 목표로 한다. 제안된 방법을 검증하기 위해 얼굴 인식에 널리 사용되는 벤치 마크 데이터셋을 활용하였고, 그 결과 제안된 방법이 높은 정확도로 멤버를 분류할 수 있다는 것을 확인하였다.

  • PDF

Experiment and Analysis for Deep Learning based Phase-Only Hologram Super-Resolution (딥러닝 기반의 고해상도 위상 홀로그램 획득을 위한 실험 및 분석)

  • Kim, Woosuk;Kang, Ji-Won;Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.325-326
    • /
    • 2020
  • 고해상도의 홀로그램을 얻기 위한 다양한 연구가 지속되고 있다. 본 논문은 고해상도의 위상 홀로그램을 획득하기 위하여 딥러닝 기반의 학습과 복원 결과를 가지고 분석을 진행한다. 사용된 위상 홀로그램은 보편적인 이미지와 값의 범위가 동일하다. SISR(Single Image Super Resolution)에서 좋은 결과를 보인 네트워크를 사용하여 위상 홀로그램에 대한 학습을 진행하였다. 네트워크로 획득한 홀로그램과 원본 홀로그램의 복원 결과를 비교하여, 차이점과 개선해야할 것들에 대해서 심도 있게 분석한다.

  • PDF

Development of Technique in Super Resolution domain that eliminates unnecessary Correlation information between Pixels & Channels. (픽셀, 채널간 불필요한 상호연관 정보를 제거하는 초해상화 딥러닝 기법)

  • Kang, Jung-Heum;Bae, Sung-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.656-659
    • /
    • 2020
  • 초해상화 딥러닝 기법은 학습 시 수렴하기까지 최소 수백 번의 에폭을 필요로 하며 오랜 시간이 걸린다. 최근, 영상 인식용 딥러닝 모델에서는 학습 수렴 속도를 향상시키기 위해 픽셀, 채널간 불필요한 상호연관 정보를 제거하는 Deconvolution 기술이 제안되었다. 본 논문에서는 최초로 Deconvolution 기술을 초해상화 딥러닝 방법에 적용하여 학습 수렴 속도 증가를 시도했다. 영상 인식 딥러닝 기법과 다르게 초해상화 딥러닝 기법은 이미지 특성 추출 부분과 이미지 복원 부분의 정보를 보존하는 것이 중요하기 때문에, EDSR을 Baseline 모델로 사용하여 양쪽 끝의 레이어는 기존의 Convolution 연산을 그대로 유지하고, 중간 레이어의 ResBlock 내의 Convolution 연산만 Deconvolution 연산으로 바꿔서 구성하였다. 초해상화 벤치마크 데이터셋을 사용한 실험 결과, 수렴속도가 빨라지지 않는 결과를 도출했다. 본 논문에서는 Deconvolution 기술이 Baseline 모델의 성능을 개선하지 못하는 이유를 초해상화 분야에서 기본적으로 적용되는 Residual Learning 기법 때문으로 분석했다.

  • PDF

Deep learning based environmental sound classification for selective noise canceling (선택적 노이즈 캔슬링을 위한 딥 러닝 기반의 환경 인지 기술)

  • Choi, Hyunkook;Kim, Sangmin;Han, Seokhyeon;Shin, Seong-Hyeon;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.343-345
    • /
    • 2020
  • 본 논문에서는 선택적 노이즈 캔슬링을 위한 환경 인지 기술을 제안한다. 기존의 노이즈 캔슬링은 모든 소리를 구분 없이 차단하여 여러 가지 문제를 유발할 수 있으며 공통된 노이즈 캔슬링 동작으로 각 소음에 최적화된 성능을 보장할 수 없다. 이러한 문제를 해결하기 위해 제안하는 방법은 대표적 오디오 특성인 멜-스펙트로그램과 스펙트로그램 기반의 시간적 특성 벡터를 사용하여 환경 인지를 진행한다. 본 논문에서는 attack, rotation, sawing으로 구성된 3가지 소음과 speech, tonal로 구성된 2가지 비 소음으로 총 5가지 클래스를 분류한다. 제안하는 방법에서 특성 벡터로 멜-스펙트로그램만을 사용했을 때 87.5%의 분류 성능을 보였으며, 스펙트로그램 기반의 시간적 특성을 추가했을 때 분류 성능이 91.2%로 향상되었다.

  • PDF

Deep Learning-based Speech Voice Separation Training To Enhance STT Performance (STT 성능 향상을 위한 딥러닝 기반 발화 음성 분리학습)

  • Kim, Bokyoung;Yang, Youngjun;Hwang, Yonghae;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.851-853
    • /
    • 2022
  • 인공지능을 활용한 다양한 딥러닝 기술의 보급과 상용화로 오디오 음성 인식 분야에서도 음성 인식의 정확도를 높이기 위한 다양한 연구가 진행되고 있다. 최근 STT 를 위한 음성 인식 엔진은 딥러닝 기술을 기반으로 과거에 비해 높은 정확도를 보이고 있다. 하지만 예능 프로그램, 드라마, 스포츠 방송 등과 같이 비음성 신호와 음성 신호가 함께 녹음되는 오디오의 경우 음성 인식 정확도가 크게 낮아지는 문제가 발생한다. 이에 본 연구에서는 다양한 장르의 오디오를 음성과 음악을 분리하는 딥러닝 모델을 활용하여 음성 신호와 비음성 신호로 분리하는 방법을 제시하고, STT 결과를 분석하여 음성 인식의 정확도를 높이기 위한 연구 방향을 제시한다.

  • PDF

A Vibration Signal-based Deep Learning Model for Bearing Diagnosis (베어링 진단을 위한 진동 신호 기반의 딥러닝 모델)

  • Park, SuYeon;Kim, Jaekwang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1232-1235
    • /
    • 2022
  • 최근 자동차, 철도차량 등 사용자가 있는 기계 시스템에서의 고장 발생 시 사용자의 안전과 관련된 사고로 이어질 수 있어 부품에 대한 모니터링 및 고장 여부 판단은 매우 중요하다. 이러한 부품 중에서 베어링은 회전체와 회전하지 않는 물체 사이에서 회전이 원활하게 이루어질 수 있도록 하는 부품인데, 베어링에 결함이 발생하게 될 경우, 기계 시스템이 정지하거나, 마찰 열에 의해 화재 등의 치명적인 위험이 발생한다. 본 논문에서는 Resnet과 오토인코더를 활용하여 진동 신호 기반의 베어링의 고장을 감지하고 분류할 수 있는 모델을 제안한다. 제안 방법은 raw data를 이미지로 변환하여 입력으로 사용하는데, 이러한 접근을 통해 수집된 데이터의 손실을 최소화하고 데이터가 가지는 정보를 최대한 분석에 활용할 수 있다. 제안 모델의 검증을 위하여 공개된 데이터셋으로 학습/검증 하였고, 제안 방법이 기존 방법과 비교하여 더 높은 F1 Score와 정확도를 보임을 확인하였다.

  • PDF

Deep Learning-based Phase-only Hologram Generation (심층 학습 기반 위상 홀로그램 생성)

  • Cha, Junyeong;Ban, Hyunmin;Kim, Hui Yong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.854-857
    • /
    • 2022
  • 본 논문에서는 기존 이미지를 통해 위상 홀로그램을 생성하는 네트워크를 학습 및 최적화하여, 기존에 사용하는 알고리즘 방식인 GS 알고리즘(Gerchberg-Saxton algorithm)을 대체하는 것을 목표로 한다. GS는 반복 최적화 기법으로 한 장의 이미지에서 위상 홀로그램을 생성하는데 많은 시간이 걸리지만, 심층 학습 기반으로 학습된 모델을 통해 위상 홀로그램을 생성할 경우, 반복 최적화 과정 없이 짧은 시간 안에 위상 홀로그램을 생성할 수 있다. GS와 심층 학습 기반으로 각각 생성한 위상 홀로그램을 ASM(Angular Spectrum Method)을 통해 수치적으로 재복원하여 PSNR로 원본 이미지와 비교한 결과, 심층 학습 기반으로 생성한 위상 홀로그램에서 더 좋은 화질의 이미지를 짧은 시간 안에 얻을 수 있었다.

  • PDF

Pediatric RDS classification method employing segmentation-based deep learning network (영역 분할 기반 심층 신경망을 활용한 소아 RDS 판별 방법)

  • Kim, Jiyeong;Kang, Jaeha;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1181-1183
    • /
    • 2022
  • 신생아 호흡곤란증후군(RDS, Respiratory Distress Syndrome)은 미숙아 사망의 주된 원인 중 하나이며, 이 질병은 빠른 진단과 치료가 필요하다. 소아의 x-ray 영상을 시각적으로 분석하여 RDS 의 판별을 하고 있으나, 이는 전문의의 주관적인 판단에 의지하기 때문에 상당한 시간적 비용과 인력이 소모된다. 이에 따라, 본 논문에서는 전문의의 진단을 보조하기 위해 심층 신경망을 활용한 소아 RDS/nonRDS 판별 방법을 제안한다. 소아 전신 X-ray 영상에 폐 영역 분할을 적용한 데이터 세트와 증강방법으로 추가한 데이터 세트를 구축하며, RDS 판별 성능을 높이기 위해 ImageNet 으로 사전학습된 DenseNet 판별 모델에 대해 구축된 데이터 세트로 추가 미세조정 학습을 수행한다. 추론 시 입력 X-ray 영상에 대해 MSRF-Net 으로 분할된 폐 영역을 얻고 이를 DenseNet 판별 모델에 적용하여 RDS 를 진단한다. 실험결과, 데이터 증강과 폐 영역을 분할을 적용한 판별 방법이 소아전신 X-ray 데이터 세트만을 사용하는 것과 비교하여 3.9%의 성능향상을 보였다.

  • PDF

Plant leaf area estimation using synthetic dataset and deep learning model (합성 데이터셋과 딥러닝 모델을 이용한 식물 엽면적 추정)

  • Suh, Hyun Kwon;Ahn, Juyeon;Park, Hyeonji
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.90-92
    • /
    • 2022
  • 이 논문에서는 합성된 애기장대 데이터셋을 활용하여 딸기의 엽면적을 추정할 수 있는 딥러닝 모델을 제안한다. 제안된 모델에서는 개별 잎 검출을 위하여 합성 데이터셋으로 학습된 Mask R-CNN 의 객체 검출 모델을 사용하였고, 이어 이미지 후처리 작업에 해당되는 모폴로지 연산의 침식 및 팽창, 픽셀 카운터를 통해 엽면적을 추정하였다. 각기 다른 역할을 수행하는 신경망 계층에 어텐션 메커니즘 적용하여 검출 성능의 향상과 검출 시간을 단축하였다. 제안된 모델은 딸기 데이터셋을 사용하지 않는 합성된 데이터셋만으로도 실제 온실에서 획득한 다양한 이미지에서의 딸기 엽면적을 추정하는 데에 우수한 성능을 보여준다.

  • PDF