Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.235-237
/
2021
코로나 19로 대학교 강의들이 비대면 방식으로 전환되고 있는데, 기존의 교수학습 지원센터는 웹 환경만을 제공한다. 따라서 본 논문에서는 모바일 애플리케이션을 통해 수강생들이 교수학습 지원센터에 쉽게 접근할 수 있도록 도와주는 시스템을 개발하였다. 애플리케이션에서 학생들의 강의 시간 및 시험, 과제 등의 일정을 관리해주고, 푸시 알림을 제공해주는 학습 도우미의 역할을 수행한다. 뿐만 아니라 직관적인 인터페이스, 다크 모드, scroll-to-top 버튼 등을 고려한 디자인으로 사용자의 편리함을 도모한다. 학습 도우미 애플리케이션의 가장 핵심기능 중 하나는 머신러닝 기법 중 비선형 회귀(Non-Linear Regression)을 이용해 성적 데이터를 분석해주는 차별화된 기능이다. 이를 위해 최종적인 성적을 종속변수, 일정 기간까지의 성적을 독립변수로 설정하여 기존의 성적 데이터를 바탕으로 종속변수인 최종성적을 랜덤 포레스트 비선형 회귀분석으로 예측하는 알고리즘을 제시하고자 한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.267-269
/
2020
입모양 인식(Lip Reading) 기술은 입술 움직임을 통해 발화를 분석하는 기술이다. 본 논문에서는 일상적으로 사용하는 10개의 상용구에 대해서 발화자의 안면 움직임 분석을 통해 실시간으로 분류하는 연구를 진행하였다. 시간상의 연속된 순서를 가진 영상 데이터의 특징을 고려하여 3차원 합성곱 신경망 (Convolutional Neural Network)을 사용하여 진행하였지만, 실시간 시스템 구현을 위해 연산량 감소가 필요했다. 이를 해결하기 위해 차 영상을 이용한 2차원 합성곱 신경망과 LSTM 순환 신경망 (Long Short-Term Memory) 결합 모델을 설계하였고, 해당 모델을 이용하여 실시간 시스템 구현에 성공하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.333-337
/
2020
현재 많은 교육기관에서 활용되고 있는 교수학습지원시스템의 기능 부족과 교육환경에 부합하지 못해 낮은 이용성을 보이는 부분을 보완하여 일반적인 강의 형태를 일반형, 참여형, 실습형 등으로 세분화하여 수업의 형태에 필요한 기능을 개발하여 정적인 수업의 형태에서 교육자와 학생들 사이에 소통할 수 있는 환경을 구성하였고, 더 나아가 PC, 스마트폰, 태블릿 등 다양한 기기에서 접근 및 사용을 할 수 있는 웹을 기반으로 서비스를 제작하여 공간에 제약 없이 교육자와 학생의 효과적인 교육환경을 제공한다. 개발 과정에서 다양한 스타트업에서 이용되는 Django와 많은 사용자가 확보된 Javascript을 이용해 개발 기간 단축하였다. 또한 웹소켓(Websocket)을 이용해 최소한의 데이터 통신으로 빠른 실시간 통신을 구현하였고, 다양한 브라우저에 대응할 수 있도록 웹 표준을 준수하였다. 서버의 경우에는 아마존 웹 서비스(AWS)를 활용하였고, Linux 환경에서 동작 컨테이너화를 통해 보안성을 확보하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.228-229
/
2020
최근 딥러닝 기술은 여러 컴퓨터 비전 응용 분야에서 많이 쓰이고 있다. 물체 인식, 분류 및 영상 생성 등을 예로 들 수 있다. 특히 초고해상도 변환 문제에서 최근 딥러닝을 사용하면서 큰 성능 개선을 얻고 있다. Fast super-resolution convolutional neural network (FSRCNN)은 딥러닝 기반 초고해상도 알고리즘으로 잘 알려져 있으며, 여러 개의 convolutional layer로 추출한 저 해상도의 입력 특징을 활용하여 deconvolutional layer에서 초고해상도의 영상을 출력하는 알고리즘이다. 본 논문에서는 병렬 연산 효율성을 고려한 FPGA 기반 convolutional neural networks 가속기를 제안한다. 특히 deconvolutional layer를 convolutional layer로 변환하는 방법을 통해서 에너지 효율적인 가속기를 설계했다. 또한 제안한 방법은 FPGA 리소스를 고려하여 FSRCNN의 구조를 변형한 Optimal-FSRCNN을 제안한다. 사용하는 곱셈기의 개수를 FSRCNN 대비 2.4 배 압축하였고, 초고해상도 변환 성능을 평가하는 지표인 PSNR은 FSRCNN과 비슷한 성능을 내고 있다. 이를 통해서 FPGA 에 최적화된 네트워크를 구현하여 FHD 입력 영상을 UHD 영상으로 출력하는 실시간 영상처리 기술을 개발했다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.25-28
/
2020
Automatic segmentation of brain tissues such as WM, GM, and CSF from brain MRI scans is helpful for the diagnosis of many neurological disorders. Accurate segmentation of these brain structures is a very challenging task due to low tissue contrast, bias filed, and partial volume effects. With the aim to improve brain MRI segmentation accuracy, we propose an end-to-end convolutional based U-SegNet architecture designed with multi-scale kernels, which includes cascaded dilated convolutions for the task of brain MRI segmentation. The multi-scale convolution kernels are designed to extract abundant semantic features and capture context information at different scales. Further, the cascaded dilated convolution scheme helps to alleviate the vanishing gradient problem in the proposed model. Experimental outcomes indicate that the proposed architecture is superior to the traditional deep-learning methods such as Segnet, U-net, and U-Segnet and achieves high performance with an average DSC of 93% and 86% of JI value for brain MRI segmentation.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.340-343
/
2020
캡스톤 기업 연계형의 과제로 드론 교육에 쓰이는 시뮬레이션을 대체할 드론 교육 게임을 제작한다. 교육생의 입장에서 시뮬레이션은 복잡하고 지루하기 때문에 다양한 교육과 정보, 재미있는 콘텐츠를 담은 드론 게임을 만들어 스스로 학습을 진행하게 하는 것이 목표이다. 제작에 앞서 먼저 연구된 시뮬레이션과 게임을 통해 어떤 문제로 상용화가 되기 힘이 들었는지 조사했다. 재미있는 콘텐츠를 제공해 드론 기초 조작을 쉽게 학습할 수 있도록 유도했지만 교육생들이 실제 드론을 어떤 컨트롤러로 조작하는가에 대한 조사가 미흡했다. 이를 해결하기 위해서 필요한 학습 콘텐츠를 설계하고 교육생들이 소지한 드론 컨트롤러로 체험을 할 수 있도록 구현했다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.347-350
/
2020
본 논문에서는 영상 변환 기술인 이산웨이블릿변환(Discrete Wavelet Transform, DWT)를 딥러닝 기반의 네트워크로 구현한다. 딥러닝 기술 중에도 CNN 기반으로 네트워크를 설계하였으며, 본 DWT 네트워크는 해상도에 의존적이지 않은 계층들로만 구성된다. 데이터세트를 구성할 때 파이썬의 라이브러리를 사용하여 레이블 데이터세트를 구성한다. 128×128크기의 gray-scale 영상을 입력으로 사용하고 이에 대응하는 레이블 데이터세트를 구성하여 1-level DWT를 수행하는 네트워크의 학습을 진행한다. 역방향 변환도 네트워크 설계 후 데이터세트를 구성하여 학습을 진행한다. 학습이 완료된 1-level DWT 네트워크를 반복적으로 사용하여 Multi-level DWT 네트워크를 구성한다. 또한 양자화에 의한 간단한 영상압축 실험을 진행하여 DWT 네트워크의 성능과 압축 등의 응용분야에 활용할 수 있음을 보인다. 설계한 DWT 네트워크의 1-level 순방향 변환 성능은 42.18dB의 PSNR을 보였고, 1-level 역방향 변환 성능은 50.13dB의 PSNR을 보였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.103-105
/
2020
본 논문에서는, 영상 분류 문제에서 손실 값 계산 시 정답 부류를 제외한 나머지 부류에서 우세한 결괏값이 나오지 않도록 평활화하는 보조적인 손실함수를 고안한다. 합성곱 신경망 구조를 이용해 학습이 진행되면 손실함수가 작아지는 방향으로 가중치가 갱신되기 때문에, 정답을 제외한 나머지 부류들의 결괏값은 줄어든다. 하지만, 정답을 제외한 나머지 부류들 사이의 상대적인 값이 고려되지 않고 손실함수가 줄어들기 때문에 값들은 균일하지 않게 되고, 정답 부류와 유사한 특징을 가진 부류들의 값이 상대적으로 커지게 된다. 이는 정답 부류와 나머지 부류 중 가장 값이 큰 부류 사이에 공통의 특징을 공유한다고 생각할 수 있다. 정답 부류만이 가지고 있는 고유의 특징을 추출하지 못하고, 다른 부류도 가지고 있는 특징의 흔적이 남아있게 됨으로써 테스트 시 소스 도메인과 전혀 다른 도메인의 영상이 보일 때 그러한 특징이 부각 되어 부정확한 결과를 초래하게 된다. 본 논문에서는 단순한 손실함수의 추가로 도메인이 다른 환경에서 기존의 연구보다 좋은 분류 결과를 보여주는 것을 실험을 통해 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.140-142
/
2020
본 논문에서는 심층적 강화학습 기반 GOP (Group of Picture) 크기를 선택하여 HEVC/H.265의 인코더를 제어하는 방법을 제안한다. 기존 방법에서는 현재 비디오 신호를 부호화 하는 과정에서 이미 부호화한 정보를 사용해야하는 부호화 의존성에 관한 문제가 있었다. 제안 방법은 강화학습 방식을 도입하여 이러한 문제를 극복하고 입력 비디오의 시간적 상관도에 따라 GOP의 크기를 적응적으로 선택하여 부호화 한다. 본 논문에서는 GOP 선택을 위한 강화학습 환경을 새롭게 정의하고 부호화 성능에 따른 보상을 부여하는 방식으로 학습을 수행한다. 제안된 적응적 GOP 선택에 따라 인코더 제어 시, 부호화 방법의 부호화 효율이 -6.07% BD-rate 향상된 실험 결과를 보이며 본 방법의 우수성을 입증한다.
Kim, Ah-Lynne;Lee, Eun-Ji;Kwon, Hye-young;Baek, Hye-Min
Annual Conference of KIPS
/
2020.11a
/
pp.960-963
/
2020
소비자원 소비자 위해 정보 동향 분석 보고서에 따르면, 10대 미만과 60대 이상이 겪는 사고 중 가정 내 사고의 비율이 약 70%로 높은 비율을 차지하는 것을 볼 수 있다. 기존의 CCTV는 실시간으로 영상 전송은 가능하지만 영상 속의 상황 분석은 하지 못하며, 이를 위해선 지켜보는 인력이 추가로 필요하다. 따라서 보호자의 비용 부담 없이 24시간 행동 분석을 통해 보호가 필요한 가족 구성원의 사고를 예방할 수 있으며 침입과 같은 범죄를 막을 수 있는 AI CCTV의 필요성을 느껴 제작하였다. 해당 CCTV는 실시간 분석으로 영상 내의 위험을 감지하고 감지 후 관련 사항을 등록된 연락처로 송출해서 보호자에게 위험 상황을 알릴 수 있다. 향후 가정 내의 IOT 기기들과 연결하여 위험 상황 발생 시 직접 위험 상황을 해결할 수 있는 스마트 홈 보안으로 범위를 넓힐 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.