• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.026 seconds

Learning Assistant Application Using Non-Linear Regression (비선형 회귀를 이용한 학습도우미 애플리케이션)

  • Jang, Eun-yeong;Kim, Kang-Woo;Kim, Min-Sik;Ryu, Da-Eun;Park, Seoung-Mook;Ko, Byung-Chul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.235-237
    • /
    • 2021
  • 코로나 19로 대학교 강의들이 비대면 방식으로 전환되고 있는데, 기존의 교수학습 지원센터는 웹 환경만을 제공한다. 따라서 본 논문에서는 모바일 애플리케이션을 통해 수강생들이 교수학습 지원센터에 쉽게 접근할 수 있도록 도와주는 시스템을 개발하였다. 애플리케이션에서 학생들의 강의 시간 및 시험, 과제 등의 일정을 관리해주고, 푸시 알림을 제공해주는 학습 도우미의 역할을 수행한다. 뿐만 아니라 직관적인 인터페이스, 다크 모드, scroll-to-top 버튼 등을 고려한 디자인으로 사용자의 편리함을 도모한다. 학습 도우미 애플리케이션의 가장 핵심기능 중 하나는 머신러닝 기법 중 비선형 회귀(Non-Linear Regression)을 이용해 성적 데이터를 분석해주는 차별화된 기능이다. 이를 위해 최종적인 성적을 종속변수, 일정 기간까지의 성적을 독립변수로 설정하여 기존의 성적 데이터를 바탕으로 종속변수인 최종성적을 랜덤 포레스트 비선형 회귀분석으로 예측하는 알고리즘을 제시하고자 한다.

  • PDF

Real-Time Lip Reading System Implementation Based on Deep Learning (딥러닝 기반의 실시간 입모양 인식 시스템 구현)

  • Cho, Dong-Hun;Kim, Won-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.267-269
    • /
    • 2020
  • 입모양 인식(Lip Reading) 기술은 입술 움직임을 통해 발화를 분석하는 기술이다. 본 논문에서는 일상적으로 사용하는 10개의 상용구에 대해서 발화자의 안면 움직임 분석을 통해 실시간으로 분류하는 연구를 진행하였다. 시간상의 연속된 순서를 가진 영상 데이터의 특징을 고려하여 3차원 합성곱 신경망 (Convolutional Neural Network)을 사용하여 진행하였지만, 실시간 시스템 구현을 위해 연산량 감소가 필요했다. 이를 해결하기 위해 차 영상을 이용한 2차원 합성곱 신경망과 LSTM 순환 신경망 (Long Short-Term Memory) 결합 모델을 설계하였고, 해당 모델을 이용하여 실시간 시스템 구현에 성공하였다.

  • PDF

Development of Web Service for Teaching and Learning Support by Class Types (수업 유형별 맞춤형 교수학습지원 웹 서비스 개발)

  • Shin, Byung-joo;Kim, Tae-hyeon;Joo, Sang-hyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.333-337
    • /
    • 2020
  • 현재 많은 교육기관에서 활용되고 있는 교수학습지원시스템의 기능 부족과 교육환경에 부합하지 못해 낮은 이용성을 보이는 부분을 보완하여 일반적인 강의 형태를 일반형, 참여형, 실습형 등으로 세분화하여 수업의 형태에 필요한 기능을 개발하여 정적인 수업의 형태에서 교육자와 학생들 사이에 소통할 수 있는 환경을 구성하였고, 더 나아가 PC, 스마트폰, 태블릿 등 다양한 기기에서 접근 및 사용을 할 수 있는 웹을 기반으로 서비스를 제작하여 공간에 제약 없이 교육자와 학생의 효과적인 교육환경을 제공한다. 개발 과정에서 다양한 스타트업에서 이용되는 Django와 많은 사용자가 확보된 Javascript을 이용해 개발 기간 단축하였다. 또한 웹소켓(Websocket)을 이용해 최소한의 데이터 통신으로 빠른 실시간 통신을 구현하였고, 다양한 브라우저에 대응할 수 있도록 웹 표준을 준수하였다. 서버의 경우에는 아마존 웹 서비스(AWS)를 활용하였고, Linux 환경에서 동작 컨테이너화를 통해 보안성을 확보하였다.

  • PDF

Deep Learning-based Real-Time Super-Resolution Architecture Design (경량화된 딥러닝 구조를 이용한 실시간 초고해상도 영상 생성 기술)

  • Ahn, Saehyun;Kang, Suk-Ju
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.228-229
    • /
    • 2020
  • 최근 딥러닝 기술은 여러 컴퓨터 비전 응용 분야에서 많이 쓰이고 있다. 물체 인식, 분류 및 영상 생성 등을 예로 들 수 있다. 특히 초고해상도 변환 문제에서 최근 딥러닝을 사용하면서 큰 성능 개선을 얻고 있다. Fast super-resolution convolutional neural network (FSRCNN)은 딥러닝 기반 초고해상도 알고리즘으로 잘 알려져 있으며, 여러 개의 convolutional layer로 추출한 저 해상도의 입력 특징을 활용하여 deconvolutional layer에서 초고해상도의 영상을 출력하는 알고리즘이다. 본 논문에서는 병렬 연산 효율성을 고려한 FPGA 기반 convolutional neural networks 가속기를 제안한다. 특히 deconvolutional layer를 convolutional layer로 변환하는 방법을 통해서 에너지 효율적인 가속기를 설계했다. 또한 제안한 방법은 FPGA 리소스를 고려하여 FSRCNN의 구조를 변형한 Optimal-FSRCNN을 제안한다. 사용하는 곱셈기의 개수를 FSRCNN 대비 2.4 배 압축하였고, 초고해상도 변환 성능을 평가하는 지표인 PSNR은 FSRCNN과 비슷한 성능을 내고 있다. 이를 통해서 FPGA 에 최적화된 네트워크를 구현하여 FHD 입력 영상을 UHD 영상으로 출력하는 실시간 영상처리 기술을 개발했다.

  • PDF

Multi-scale U-SegNet architecture with cascaded dilated convolutions for brain MRI Segmentation

  • Dayananda, Chaitra;Lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.25-28
    • /
    • 2020
  • Automatic segmentation of brain tissues such as WM, GM, and CSF from brain MRI scans is helpful for the diagnosis of many neurological disorders. Accurate segmentation of these brain structures is a very challenging task due to low tissue contrast, bias filed, and partial volume effects. With the aim to improve brain MRI segmentation accuracy, we propose an end-to-end convolutional based U-SegNet architecture designed with multi-scale kernels, which includes cascaded dilated convolutions for the task of brain MRI segmentation. The multi-scale convolution kernels are designed to extract abundant semantic features and capture context information at different scales. Further, the cascaded dilated convolution scheme helps to alleviate the vanishing gradient problem in the proposed model. Experimental outcomes indicate that the proposed architecture is superior to the traditional deep-learning methods such as Segnet, U-net, and U-Segnet and achieves high performance with an average DSC of 93% and 86% of JI value for brain MRI segmentation.

  • PDF

A Study on the Production of Learning Game to Replace Drone Simulation (드론 시뮬레이션을 대체할 학습 게임 제작 연구)

  • Lee, Seung-Joo;Song, Chang-Ha;Lee, Man-Gwon;Jin, Min-Jun;Joo, Sang-Hyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.340-343
    • /
    • 2020
  • 캡스톤 기업 연계형의 과제로 드론 교육에 쓰이는 시뮬레이션을 대체할 드론 교육 게임을 제작한다. 교육생의 입장에서 시뮬레이션은 복잡하고 지루하기 때문에 다양한 교육과 정보, 재미있는 콘텐츠를 담은 드론 게임을 만들어 스스로 학습을 진행하게 하는 것이 목표이다. 제작에 앞서 먼저 연구된 시뮬레이션과 게임을 통해 어떤 문제로 상용화가 되기 힘이 들었는지 조사했다. 재미있는 콘텐츠를 제공해 드론 기초 조작을 쉽게 학습할 수 있도록 유도했지만 교육생들이 실제 드론을 어떤 컨트롤러로 조작하는가에 대한 조사가 미흡했다. 이를 해결하기 위해서 필요한 학습 콘텐츠를 설계하고 교육생들이 소지한 드론 컨트롤러로 체험을 할 수 있도록 구현했다.

  • PDF

Discrete Wavelet Transform Network based on Deep Learning (딥러닝 기반 이산웨이블릿변환 네트워크)

  • Lee, Ju-Won;Park, Chan-Seung;Yoon, Young-Jae;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.347-350
    • /
    • 2020
  • 본 논문에서는 영상 변환 기술인 이산웨이블릿변환(Discrete Wavelet Transform, DWT)를 딥러닝 기반의 네트워크로 구현한다. 딥러닝 기술 중에도 CNN 기반으로 네트워크를 설계하였으며, 본 DWT 네트워크는 해상도에 의존적이지 않은 계층들로만 구성된다. 데이터세트를 구성할 때 파이썬의 라이브러리를 사용하여 레이블 데이터세트를 구성한다. 128×128크기의 gray-scale 영상을 입력으로 사용하고 이에 대응하는 레이블 데이터세트를 구성하여 1-level DWT를 수행하는 네트워크의 학습을 진행한다. 역방향 변환도 네트워크 설계 후 데이터세트를 구성하여 학습을 진행한다. 학습이 완료된 1-level DWT 네트워크를 반복적으로 사용하여 Multi-level DWT 네트워크를 구성한다. 또한 양자화에 의한 간단한 영상압축 실험을 진행하여 DWT 네트워크의 성능과 압축 등의 응용분야에 활용할 수 있음을 보인다. 설계한 DWT 네트워크의 1-level 순방향 변환 성능은 42.18dB의 PSNR을 보였고, 1-level 역방향 변환 성능은 50.13dB의 PSNR을 보였다.

  • PDF

Domain Generalization via Class Balanced Probability Learning (균일한 부류 확률값 학습을 통한 도메인 일반화)

  • Yoon, Sungjoon;Shim, Kyujin;Kim, Changick
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.103-105
    • /
    • 2020
  • 본 논문에서는, 영상 분류 문제에서 손실 값 계산 시 정답 부류를 제외한 나머지 부류에서 우세한 결괏값이 나오지 않도록 평활화하는 보조적인 손실함수를 고안한다. 합성곱 신경망 구조를 이용해 학습이 진행되면 손실함수가 작아지는 방향으로 가중치가 갱신되기 때문에, 정답을 제외한 나머지 부류들의 결괏값은 줄어든다. 하지만, 정답을 제외한 나머지 부류들 사이의 상대적인 값이 고려되지 않고 손실함수가 줄어들기 때문에 값들은 균일하지 않게 되고, 정답 부류와 유사한 특징을 가진 부류들의 값이 상대적으로 커지게 된다. 이는 정답 부류와 나머지 부류 중 가장 값이 큰 부류 사이에 공통의 특징을 공유한다고 생각할 수 있다. 정답 부류만이 가지고 있는 고유의 특징을 추출하지 못하고, 다른 부류도 가지고 있는 특징의 흔적이 남아있게 됨으로써 테스트 시 소스 도메인과 전혀 다른 도메인의 영상이 보일 때 그러한 특징이 부각 되어 부정확한 결과를 초래하게 된다. 본 논문에서는 단순한 손실함수의 추가로 도메인이 다른 환경에서 기존의 연구보다 좋은 분류 결과를 보여주는 것을 실험을 통해 확인하였다.

  • PDF

Deep Reinforcement Learning based Adaptive GOP Selection for HEVC/H.265 Encoder (심층적 강화학습 기반 적응적 GOP 선택을 통한 HEVC/H.265 인코더 제어)

  • Lee, Jung-Kyung;Kim, Nayoung;Kang, Je-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.140-142
    • /
    • 2020
  • 본 논문에서는 심층적 강화학습 기반 GOP (Group of Picture) 크기를 선택하여 HEVC/H.265의 인코더를 제어하는 방법을 제안한다. 기존 방법에서는 현재 비디오 신호를 부호화 하는 과정에서 이미 부호화한 정보를 사용해야하는 부호화 의존성에 관한 문제가 있었다. 제안 방법은 강화학습 방식을 도입하여 이러한 문제를 극복하고 입력 비디오의 시간적 상관도에 따라 GOP의 크기를 적응적으로 선택하여 부호화 한다. 본 논문에서는 GOP 선택을 위한 강화학습 환경을 새롭게 정의하고 부호화 성능에 따른 보상을 부여하는 방식으로 학습을 수행한다. 제안된 적응적 GOP 선택에 따라 인코더 제어 시, 부호화 방법의 부호화 효율이 -6.07% BD-rate 향상된 실험 결과를 보이며 본 방법의 우수성을 입증한다.

  • PDF

Home Monitoring CCTV by using deep learning (딥러닝을 활용한 가정 모니터링 CCTV)

  • Kim, Ah-Lynne;Lee, Eun-Ji;Kwon, Hye-young;Baek, Hye-Min
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.960-963
    • /
    • 2020
  • 소비자원 소비자 위해 정보 동향 분석 보고서에 따르면, 10대 미만과 60대 이상이 겪는 사고 중 가정 내 사고의 비율이 약 70%로 높은 비율을 차지하는 것을 볼 수 있다. 기존의 CCTV는 실시간으로 영상 전송은 가능하지만 영상 속의 상황 분석은 하지 못하며, 이를 위해선 지켜보는 인력이 추가로 필요하다. 따라서 보호자의 비용 부담 없이 24시간 행동 분석을 통해 보호가 필요한 가족 구성원의 사고를 예방할 수 있으며 침입과 같은 범죄를 막을 수 있는 AI CCTV의 필요성을 느껴 제작하였다. 해당 CCTV는 실시간 분석으로 영상 내의 위험을 감지하고 감지 후 관련 사항을 등록된 연락처로 송출해서 보호자에게 위험 상황을 알릴 수 있다. 향후 가정 내의 IOT 기기들과 연결하여 위험 상황 발생 시 직접 위험 상황을 해결할 수 있는 스마트 홈 보안으로 범위를 넓힐 수 있다.