Although registration of dogs is mandatory according to the revision of the Animal Protection Act, the registration rate is low due to the inconvenience of the current registration method. In this paper, a performance improvement study was conducted on the dog face recognition technology, which is being reviewed as a new registration method. Through deep learning learning, an embedding vector for facial recognition of a dog was created and a method for identifying each dog individual was experimented. We built a dog image dataset for deep learning learning and experimented with InceptionNet and ResNet-50 as backbone networks. It was learned by the triplet loss method, and the experiments were divided into face verification and face recognition. In the ResNet-50-based model, it was possible to obtain the best facial verification performance of 93.46%, and in the face recognition test, the highest performance of 91.44% was obtained in rank-5, respectively. The experimental methods and results presented in this paper can be used in various fields, such as checking whether a dog is registered or not, and checking an object at a dog access facility.
Recently, the recommender system has been widely used in various fields such as movies, music, online shopping, and social media, and in the meantime, the recommender model has been developed from correlation analysis through the Apriori model, which can be said to be the first-generation model in the recommender system field. In 2005, many models have been proposed, including deep learning-based models, which are receiving a lot of attention within the recommender model. The recommender model can be classified into a collaborative filtering method, a content-based method, and a hybrid method that uses these two methods integrally. However, these basic methods are gradually losing their status as methodologies in the field as they fail to adapt to internal and external changing factors such as the rapidly changing user-item interaction and the development of big data. On the other hand, the importance of deep learning methodologies in recommender systems is increasing because of its advantages such as nonlinear transformation, representation learning, sequence modeling, and flexibility. In this paper, among deep learning methodologies, RNN, CNN, and GAN-based models suitable for sequential modeling that can accurately and flexibly analyze user-item interactions are classified, compared, and analyzed.
Journal of Korean Home Economics Education Association
/
v.32
no.4
/
pp.149-170
/
2020
The purpose of this study was to develop and evaluate a Smart learning-based middle school home economics education plan to improve the online home economics education classes. The educational plan in this study was completed through the process of analysis, design, development, and evaluation. The results of this study are as follows. First, as a result of analyzing consumer life units in the middle school textbooks based on 2015-revised curriculum, Smart learning activities were presented in only two out of the 12 textbooks analyxed. Second, a Smart learning-based middle school home economics education plan was developed in this study with the following characteristics: the topics and contents are structured so that to help learners actively engage in the teaching and learning activities; the education plan to reflects various media and current issues that learners may be interested in; the lesson plans were structured with the premise of online classes; softwares that enable real-time discussion and collaboration are used; and the evaluation method are composed of online activities. Third, the expert evaluation scores for the educational plan and activity materials developed were 4.52 (5-point Likert scale), when averaged across subject, goal, content, teaching/learning activity, and evaluation, and the overall content validity index(CVI) was 0.95. The adequacy of execution, benefit, attractiveness, usefulness, and feasibility were highly with an average of 4.62. Based on the experts' comments, the education plan and activity materials were revised and completed. This study is meaningful in that it developed teaching and learning activities based on online classes after the COVID-19 outbreak, overcoming the limitations of offline classes. It has implications for face-to-face home economics classes due to COVID-19, as it suggests ways to blend online and offline teaching/learning activities depending on the situation.
Listening comprehension is an integrative and creative process of interaction through which listeners receive speakers' production of linguistic or non-linguistic knowledge. Compared with reading comprehension, it may arouse difficulties and thus impose more burdens on foreign learners. The Audio-Lingual Method focused primarily on speaking. Mimicry, repetition, rote memory, and transformation drills actually interfered with listening comprehension. So learners lost interest and were not highly motivated. Improving listening comprehension requires continual attentiveness and interest. Listening skill can be extended systematically only when students are frequently exposed to a wide range of listening materials with an affective, cultural, social, and psycholinguistic approach. Therefore, teachers should help students learn how to comprehend intactly the overall meaning of intended messages. The literature on teaching listening skill suggests various useful activities: TPR, dictation, role playing, singing, picture recognition, completion, prediction, seeking specific information, summarizing, labeling, humor, jokes, cartoons, media, and so on. Practical classroom teaching necessitates a systematic procedure in which students should take part in meaningful tasks/activities. In addition to this, learners must practice listening comprehension trough a self-study process.
Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.
Park, Jin-Young;Ahn, Won-Jin;Ahn, Cheon-Su;Kang, Suk-Ju
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.237-239
/
2019
최근 인터넷 영상 매체가 발전하고 대중화되며 이를 통한 광고 효과가 커지고 있다. 이들 영상에 관련된 광고를 자동으로 연결할 수 있다면 효과적일 것이다. 본 논문은 딥러닝 검출 툴을 적용한 영상 카테고리 분류 기법을 제안한다. 이 기법은 주어진 영상을 몇 가지 카테고리로 분류하고, 분류 정보를 바탕으로 관련성이 높은 광고를 연결지어, 결과적으로 영상 시청자에게 맞춤형 광고를 제시한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.235-236
/
2019
본 논문에서는 초해상도, 압축 열화 제거 등 영상 화질 복원 연구에서 영상의 다운샘플링에 딥러닝을 적용한 연구들에 대해 소개한다. 첫 번째 연구는 두 개의 컨볼루셔널 신경망과 영상 압축 코덱을 이용하여 압축 영상의 화질을 향상시켰다. 두 번째 연구는 초해상도 문제를 해결함에 있어 다운샘플링 역시 딥러닝을 통해 학습하여 복원 영상의 화질을 향상시켰다. 두 연구를 통해 영상 화질 개선 문제 해결에 있어 적절한 딥러닝 학습 방법을 영상 다운샘플링에 적용하여 좋은 결과를 얻을 수 있다는 것을 확인할 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.208-209
/
2019
저해상도의 홀로그램을 Bilinear및 Bicubic 등의 알고리즘을 이용하여 업 스케일링을 하는 방법도 있다. 하지만, 홀로그램 데이터의 손실이 매우 크게 발생하며, 이로 인한 화질 저하가 발생하게 된다. 본 논문에서는 기존에 요구되던 파라미터와 연산량, 메모리를 대폭 감소시키면서도 준수한 성능을 보이는 RCI 구조를 제안한다. 제안한 네트워크 구조는 준수한 성능을 보이면서도 기존 2D 이미지에 대한 SISR 네트워크보다 더 빠르고 더 적은 메모리를 사용하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.162-164
/
2019
본 논문에서는 물체인식 딥러닝 모델 생성에 필요한 라벨링(Labeling)과정에서 사용자가 다양한 기능을 활용하여 효과적인 학습 데이터를 구성할 수 있는 GUI 프로그램을 구현했다. 프로그램의 인터페이스는 파이썬 기반의 GUI 모듈인 Tkinter 를 활용하여, 실시간으로 이미지 데이터를 수집할 수 있는 크롤링(Crawling)기능과 미리 학습된 Retinanet 을 통해 이미지 데이터를 인식함으로써 자동으로 주석(Annotation) 과정을 수행할 수 있는 기능을 구성했다. 또한, 수집한 이미지 데이터를 다양한 효과와 노이즈, 변형 등으로 Augmentation 기능을 추가함으로써, 사용자가 모델을 학습하기 위한 데이터 전처리 단계를 하나의 GUI 프로그램에서 수행할 수 있도록 했다. 또한 사용자가 직접 학습한 모델을 추정 모델(Inference Model)로 변환하여 프로그램에 입력할 수 있도록 설계한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.143-144
/
2019
자율 주행 차량의 상용화를 위해서는 차량의 정교한 위치 추정이 필수적이다 특히 실내공간의 경우 다중 경로 등 복잡한 경로를 주행 중인 차량의 위치를 추적해야 한다. 이 경우 정밀한 위치 추정을 위해 이동체가 주행하는 경로를 정확히 판별하는 것이 필수적이다. 본 논문에서는 다중 경로가 존재하는 복잡한 실내공간을 주행하는 이동체의 경로 추정을 위해 딥러닝 기법을 이용한다. 특히 딥러닝 기법이 주행 차량의 영상 정보를 활용하는 방식을 기술한다. 본 논문에서 딥러닝 방식은 주행 차량의 영상 정보를 이용하여 이동체가 주행하게 될 경로를 예측한다. 모의실험은 적용된 딥러닝 방식이 이동체의 주행 경로를 정확하게 예측함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.