Vitiligo is a condition characterized by the destruction or dysfunction of melanin-producing cells in the skin, resulting in a loss of skin pigmentation. Facial vitiligo, specifically affecting the face, significantly impacts patients' appearance, thereby diminishing their quality of life. Evaluating the efficacy of facial vitiligo treatment typically relies on subjective assessments, such as the Facial Vitiligo Area Scoring Index (F-VASI), which can be time-consuming and subjective due to its reliance on clinical observations like lesion shape and distribution. Various machine learning and deep learning methods have been proposed for segmenting vitiligo areas in facial images, showing promising results. However, these methods often struggle to accurately segment vitiligo lesions irregularly distributed across the face. Therefore, our study introduces a framework aimed at improving the segmentation of vitiligo lesions on the face and providing an evaluation of vitiligo lesions. Our framework for facial vitiligo segmentation and lesion evaluation consists of three main steps. Firstly, we perform face detection to minimize background areas and identify the face area of interest using high-quality ultraviolet photographs. Secondly, we extract facial area masks and vitiligo lesion masks using a semantic segmentation network-based approach with the generated dataset. Thirdly, we automatically calculate the vitiligo area relative to the facial area. We evaluated the performance of facial and vitiligo lesion segmentation using an independent test dataset that was not included in the training and validation, showing excellent results. The framework proposed in this study can serve as a useful tool for evaluating the diagnosis and treatment efficacy of vitiligo.
International Journal of Computer Science & Network Security
/
제21권4호
/
pp.145-166
/
2021
M-learning is one of the most important modern learning environments in developed countries, especially in the context of the COVID-19 pandemic. According to the Ministry of Education policies in Saudi Arabia, gender segregation in education reflects the country's religious values, which are a part of the national policy. Thus, it will help many in the target audience to accept online learning more easily in Saudi society. The literature review indicates the importance to use the UTAUT conceptual framework to study the level of acceptance through adding a new construct to the model which is Mobile Application Quality. The study focuses on the end user's requirements to use M-learning applications. It is conducted with a qualitative method to find out the students' and companies' opinions who working in the M-learning field to determine the requirements for the development of M-learning applications that are compatible with the aspirations of conservative societies.
한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
/
pp.111-120
/
1999
Although the concept of viewing knowledge as a critical resource has been widely accepted in prior studies, it is not fully understood how to acquire available knowledge in order to improve organizational effectiveness. However, it si sure that organizational knowledge management should pursuit the achievement of the business goal by delivering relevant and useful information to the right person at the right time. Group Support System (GSS) can play an important role to transfer scatter information into meaningful business knowledge for supporting strategic corporate decision-making. This study proposes a fuzzy GSS framework for acquiring workgroup knowledge from individual memory and aggregating workgroup knowledge to organizational knowledge. This study also proposes an architecture to support the fuzzy GSS framework. The architecture consists of user agents, information management agents, and a fuzzy model manager. To illustrate how the fuzzy GSS framework can be used to support the whole process of organization knowledge acquisition, an Internet-based GSS was developed and applied in a marketing decision process. It showed that the framework was effective for acquiring organizational knowledge.
With the recent advance in smartphones, users are allowed to use mobile applications anytime anywhere, and change their way to interact with smart environment and people. As a result, the need for developing context-aware applications on smartphones has a great attention from users and developers. This paper proposes a context-aware framework for supporting UI/UX of smartphones. The proposed framework collects a wide range of sensory data from smartphones and allows developers to analyze and model context models for their desired apps. In addition, it also supports real-time inference within the apps to make them to adapt to context. In order to show effectiveness of the proposed framework, we introduce two smartphone apps: context-aware home screen and automatic detection of smartphone problem use. Therefore, we expect that the proposed framework will help developers easily implement their apps with respect to context-awareness.
A large body of previous studies investigated mathematical tasks by analyzing the design process prior to lessons or textbooks. While researchers have revealed the significant roles of mathematical tasks within written curricular, there has been a call for studies about how mathematical tasks are implemented or what is experienced and learned by students as enacted curriculum. This article proposes a mathematical task analytic framework based on a holistic definition of tasks encompassing both written tasks and the process of task enactment. We synthesized the features of the mathematical tasks and developed a task analytic framework with multiple dimensions: breadth, depth, bridging, openness, and interaction. We also applied the scoring rubric to analyze three multiplication tasks to illustrate the framework by its five dimensions. We illustrate how a series of tasks are analyzed through the framework when students are engaged in multiplicative thinking. The framework can provide important information about the qualities of planned tasks for mathematics instruction (proactive) and the qualities of implemented tasks during instruction (reactive). This framework will be beneficial for curriculum designers to design rich tasks with more careful consideration of how each feature of the tasks would be attained and for teachers to transform mathematical tasks with the provision of meaningful learning activities into implementation.
Federated learning provides an efficient integrated model for distributed data, allowing the local training of different data. Meanwhile, the goal of multi-task learning is to simultaneously establish models for multiple related tasks, and to obtain the underlying main structure. However, traditional federated multi-task learning models not only have strict requirements for the data distribution, but also demand large amounts of calculation and have slow convergence, which hindered their promotion in many fields. In our work, we apply the rank constraint on weight vectors of the multi-task learning model to adaptively adjust the task's similarity learning, according to the distribution of federal node data. The proposed model has a general framework for solving optimal solutions, which can be used to deal with various data types. Experiments show that our model has achieved the best results in different dataset. Notably, our model can still obtain stable results in datasets with large distribution differences. In addition, compared with traditional federated multi-task learning models, our algorithm is able to converge on a local optimal solution within limited training iterations.
한국데이타베이스학회 1997년도 International Conference MULTIMEDIA DATABASES on INTERNET
/
pp.215-269
/
1997
Outline $\textbullet$ Introduction $\textbullet$ Multimedia - Types of Data - Motivation - Key issue - Hardware Products - Application Areas $\textbullet$ Agents - Rationale for Agents - Sedentary vs. Mobile - Functional Categories - Application Areas $\textbullet$ Data Mining - 2-D Framework for Data Mining Tools - Classification of Tool - Application Areas - Learning Methodologies * Case Based Reasoning * Neural Networks * Statistical Learning: Orthogonal Arrays * Multi-strategy Learning $\textbullet$ Case Study - Finbot $\textbullet$ Conclusion
본 연구에서는 폼 구조의 효율적인 유효 기계적 물성 및 열전도율 예측을 위한 균질화 데이터 기반 전이학습 프레임워크를 개발하였다. Eshelby 텐서 기반의 평균장 균질화(Mean-field homogenization, MFH)는 타원체 형태의 공동을 포함하는 다공성 구조의 물성을 효율적으로 예측할 수 있지만, 셀룰러(cellular) 폼 구조의 물성은 정확하게 예측하기 어렵다. 한편, 유한요소 균질화(Finite element homogenization, FEH)는 정확성은 높지만 상대적으로 높은 해석 시간을 동반한다. 본 논문에서는 평균장 균질화와 유한요소 균질화의 장점을 결합한 데이터 기반 전이학습 프레임워크(Framework)를 제안하였다. 구체적으로, 대량의 평균장 균질화 데이터를 도출하여 사전학습 모델(Pre-trained model)을 구축하고, 상대적으로 소량의 유한요소 균질화 데이터를 이용하여 미세 조정(Fine-tuning) 하였다. 제안된 프레임워크를 검증하기 위한 수치 예제를 수행하였으며, 해석 정확도를 확인하였다. 본 연구의 결과는 다양한 폼 구조를 가진 재료의 해석에 적용할 수 있을 것으로 기대한다.
본 논문에서는 단일 강체 모델(single rigid body)의 무게 중심(center of mass) 좌표계와 발의 위치를 활용하여 캐릭터의 동작을 생성하는 프레임워크를 제안한다. 이 프레임워크를 사용하면 기존의 전신 동작(full body)에 대한 정보를 사용할 때 보다 입력 상태 벡터(input state)의 차원을 줄임으로써 강화 학습의 속도를 개선할 수 있다. 또한 기존의 방법보다 학습 속도를 약 2 시간(약 68% 감소) 감소시켰음에도 기존의 방법 대비 최대 7.5배(약 1500 N)의 외력을 더 견딜 수 있는 더욱 견고한(robust) 모션을 생성할 수 있다. 본 논문에서는 이를 위해 무게 중심의 다음 좌표계를 구하기 위해 중심 역학(centroidal dynamics)을 활용하였고, 이에 필요한 매개 변수(parameter)들과 다음 발의 위치와 접촉력 계산에 필요한 매개 변수들을 구하는 정책(policy)의 학습을 심층 강화 학습(deep reinforcement learning)을 사용하여 구현하였다.
본 연구는 OECD Education 2030 프로젝트에서 제시하고 있는 핵심역량의 반영 특성을 2015 개정 가정과 교육과정에서 분석하고자 하였으며 연구결과는 다음과 같다. 첫째, 핵심역량 범주에서 일반적인 특징은 기능, 태도, 가치 영역은 46.5%로, 학습 개념 프레임워크 영역은 17%, 역량 개발 사이클 영역은 24.2%, 복합 역량 영역은 12.5%로 나타났다. 전체적으로 교육과정 항목에서 성취기준(59%), 성격(16.1%), 교수·학습 평가 방향(9.4%), 내용체계(8%), 목표(7.6%) 순으로 반영되었으며 학습 개념 프레임워크의 역량은 성취기준에 가장 많이 반영되었다. 둘째, 핵심역량 항목은 중학교 교육과정에서 행동, 문제해결, 의사소통, 존중, 창의적 사고, 갈등해결, 공감, 비판적 사고, 자기관리, 학생 주체성 순으로 나타났다. 고등학교 교육과정에서 행동, 공감, 문제해결, 예측, 글로벌 역량, 자기관리, 학생 주체성, 지속가능 발전을 위한 리터러시, 반성, 비판적 사고 순으로 나타났다. 셋째, 열지도를 통해 3, 4단계에 해당되는 역량의 반영 정도가 높게 나타나 핵심역량의 효과적인 실천을 계획하고 지원할 필요가 있었다. 본 연구를 통해 미래를 위한 학습 안내자의 역할로 OECD에서 강조하는 핵심역량과 가정교과 역량 간의 상호관련성을 파악하고 실천 교과로서 개인의 총체적인 역량 함양을 도울 수 있어야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.