• Title/Summary/Keyword: Learning Feedback

Search Result 1,021, Processing Time 0.032 seconds

A Study on Coding Education for Non-Computer Majors Using Programming Error List

  • Jung, Hye-Wuk
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.203-209
    • /
    • 2021
  • When carrying out computer programming, the process of checking and correcting errors in the source code is essential work for the completion of the program. Non-computer majors who are learning programming for the first time receive feedback from instructors to correct errors that occur when writing the source code. However, in a learning environment where the time for the learner to practice alone is long, such as an online learning environment, the learner starts to feel many difficulties in solving program errors by himself/herself. Therefore, training on how to check and correct errors after writing the program source code is necessary. In this paper, various types of errors that can occur in a Python program were described, the errors were classified into simple errors and complex errors according to the characteristics of the errors, and the distributions of errors by Python grammar category were analyzed. In addition, a coding learning process to refer error lists was designed to present a coding learning method that enables learners to solve program errors by themselves.

Emerging Machine Learning in Wearable Healthcare Sensors

  • Gandha Satria Adi;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.378-385
    • /
    • 2023
  • Human biosignals provide essential information for diagnosing diseases such as dementia and Parkinson's disease. Owing to the shortcomings of current clinical assessments, noninvasive solutions are required. Machine learning (ML) on wearable sensor data is a promising method for the real-time monitoring and early detection of abnormalities. ML facilitates disease identification, severity measurement, and remote rehabilitation by providing continuous feedback. In the context of wearable sensor technology, ML involves training on observed data for tasks such as classification and regression with applications in clinical metrics. Although supervised ML presents challenges in clinical settings, unsupervised learning, which focuses on tasks such as cluster identification and anomaly detection, has emerged as a useful alternative. This review examines and discusses a variety of ML algorithms such as Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT), Neural Networks (NN), and Deep Learning for the analysis of complex clinical data.

Analysis of functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics (개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능과 적용 사례 분석)

  • Sung, Jihyun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.303-326
    • /
    • 2023
  • Mathematics is a discipline with a strong systemic structure, and learning deficits in previous stages have a great influence on the next stages of learning. Therefore, it is necessary to frequently check whether students have learned well and to provide immediate feedback, and for this purpose, intelligent tutoring system(ITS) can be used in math education. For this reason, it is necessary to reveal how the intelligent tutoring system is effective in personalized adaptive learning. The purpose of this study is to investigate the functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics. To achieve this goal, literature reviews and surveys with students were applied to derive implications. Based on the literature reviews, the functions of intelligent tutoring system for personalized adaptive learning were derived. They can be broadly divided into diagnosis and evaluation, analysis and prediction, and feedback and content delivery. The learning and lesson plans were designed by them and it was applied to fifth graders in elementary school for about three months. As a result of this study, intelligent tutoring system was mostly supporting personalized adaptive learning in mathematics in several ways. Also, the researcher suggested that more sophisticated materials and technologies should be developed for effective personalized adaptive learning in mathematics by using intelligent tutoring system.

An Action Research on Flipped Learning for Fundamental Nursing Practice Courses (플립러닝 적용 기본간호학실습 수업에 대한 실행연구)

  • Kim, Heeyoung;Kim, Yun-Hee
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.24 no.4
    • /
    • pp.265-276
    • /
    • 2017
  • Purpose: This study was conducted to design and implement a fundamental nursing practice based on flipped learning and to examine the effects. Methods: Participants were 57 students who were taking the fundamental nursing practice course at D university in N city. The study included processes of instructional design, action/effects and reflection. Data were analyzed using paired t-test with the SPSS/WIN 23.0. Results: In the instructional design stage, the class consisted of 3 parts: outside class (pre-learning), inside class (assessment, collaborative practice, peer review, reflection), after-class (self-directed practice, feedback). In the action/effects stage, the flipped learning was applied for 15 weeks according to the instructional design and then the effects of flipped learning were evaluated. Students showed a significant improvement in self-directed learning ability (t=-3.56, p=.001) and critical thinking disposition after the class (t=-3.72, p<.001). Finally, in the reflection stage, the researchers examined whether the four pillars of flipped learning occurred. Conclusion: Findings indicate that flipped learning applied in fundamental nursing practice is effective in improving self-directed learning ability and critical thinking disposition. The action research method was a useful way to foster professor's educational competency as well as to verify effects of a new nursing education method.

Applying and Evaluating Visualization Design Guidelines for a MOOC Dashboard to Facilitate Self-Regulated Learning Based on Learning Analytics

  • Cha, Hyun-Jin;Park, Taejung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2799-2823
    • /
    • 2019
  • With the help of learning analytics, MOOCs have wider potential to succeed in learning through promoting self-regulated learning (SRL). The current study aims to apply and validate visualization design guidelines for a MOOC dashboard to enhance such SRL capabilities based on learning analytics. To achieve the research objective, a MOOC dashboard prototype, LM-Dashboard, was designed and developed, reflecting the visualization design guidelines to promote SRL. Then, both expert and learner participants evaluated LM-Dashboard through iterations to validate the visualization design guidelines and perceived SRL effectiveness. The results of expert and learner evaluations indicated that most of the visualization design guidelines on LM-Dashboard were valid and some perceived SRL aspects such as monitoring a student's learning progress and assessing their achievements with time management were beneficial. However, some features on LM-Dashboard should be improved to enhance SRL aspects related to achieving their learning goals with persistence. The findings suggest that it is necessary to offer appropriate feedback or tips as well as to visualize learner behaviors and activities in an intuitive and efficient way for the successful cycle of SRL. Consequently, this study contributes to establishing a basis for the visual design of a MOOC dashboard for optimizing each learner's SRL.

Next-Generation Chatbots for Adaptive Learning: A proposed Framework

  • Harim Jeong;Joo Hun Yoo;Oakyoung Han
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.37-45
    • /
    • 2023
  • Adaptive has gained significant attention in Education Technology (EdTech), with personalized learning experiences becoming increasingly important. Next-generation chatbots, including models like ChatGPT, are emerging in the field of education. These advanced tools show great potential for delivering personalized and adaptive learning experiences. This paper reviews previous research on adaptive learning and the role of chatbots in education. Based on this, the paper explores current and future chatbot technologies to propose a framework for using ChatGPT or similar chatbots in adaptive learning. The framework includes personalized design, targeted resources and feedback, multi-turn dialogue models, reinforcement learning, and fine-tuning. The proposed framework also considers learning attributes such as age, gender, cognitive ability, prior knowledge, pacing, level of questions, interaction strategies, and learner control. However, the proposed framework has yet to be evaluated for its usability or effectiveness in practice, and the applicability of the framework may vary depending on the specific field of study. Through proposing this framework, we hope to encourage learners to more actively leverage current technologies, and likewise, inspire educators to integrate these technologies more proactively into their curricula. Future research should evaluate the proposed framework through actual implementation and explore how it can be adapted to different domains of study to provide a more comprehensive understanding of its potential applications in adaptive learning.

A Design of Intelligent Tutoring System for Mobile English Loaming (모바일 영어 학습을 위한 지능형 교육 시스템의 설계)

  • 이영석;김병규;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1681-1684
    • /
    • 2003
  • We propose the intelligent tutoring system for the mobile english learning. The proposed system is based on the item response theory to analyze the level of learner. We define the types of item, teaching method and item disposition according to contents modeling. The system estimates the learner level and it gives the learning contents, the evaluation results, and feedback. The system gives those by inference engine which consists of learner's level estimation value, method diagnostic value and disposition diagnostic value.

  • PDF

Quadcopter Hovering Control Using Deep Learning (딥러닝을 이용한 쿼드콥터의 호버링 제어)

  • Choi, Sung-Yug
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.263-270
    • /
    • 2020
  • In this paper, In this paper, we describe the UAV system using image processing for autonomous quadcopters, where they can apply logistics, rescue work etc. we propose high-speed hovering height and posture control method based on state feedback control with CNN from camera because we can get image of the information only every 30ms. Finally, we show the advantages of proposed method by simulations and experiments.

Learning Generative Models with the Up-Propagation Algorithm (생성모형의 학습을 위한 상향전파알고리듬)

  • ;H. Sebastian Seung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.327-329
    • /
    • 1998
  • Up-Propagation is an algorithm for inverting and learning neural network generative models. Sensory input is processed by inverting a model that generates patterns from hidden variables using top-down connections. The inversion process is iterative, utilizing a negative feedback loop that depends on an error signal propagated by bottom-up connections. The error signal is also used to learn the generative model from examples. the algorithm is benchmarked against principal component analysis in experiments on images of handwritten digits.

  • PDF

Evolving Neural Network for Realtime Learning Control (실시간 학습 제어를 위한 진화신경망)

  • 손호영;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.531-531
    • /
    • 2000
  • The challenge is to control unstable nonlinear dynamic systems using only sparse feedback from the environment concerning its performance. The design of such controllers can be achieved by evolving neural networks. An evolutionary approach to train neural networks in realtime is proposed. Evolutionary strategies adapt the weights of neural networks and the threshold values of neuron's synapses. The proposed method has been successfully implemented for pole balancing problem.

  • PDF