• 제목/요약/키워드: Learning Emotion

검색결과 412건 처리시간 0.023초

Pattern Recognition Methods for Emotion Recognition with speech signal

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.150-154
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition are determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section.

Development of Interactive Feature Selection Algorithm(IFS) for Emotion Recognition

  • Yang, Hyun-Chang;Kim, Ho-Duck;Park, Chang-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.282-287
    • /
    • 2006
  • This paper presents an original feature selection method for Emotion Recognition which includes many original elements. Feature selection has some merits regarding pattern recognition performance. Thus, we developed a method called thee 'Interactive Feature Selection' and the results (selected features) of the IFS were applied to an emotion recognition system (ERS), which was also implemented in this research. The innovative feature selection method was based on a Reinforcement Learning Algorithm and since it required responses from human users, it was denoted an 'Interactive Feature Selection'. By performing an IFS, we were able to obtain three top features and apply them to the ERS. Comparing those results from a random selection and Sequential Forward Selection (SFS) and Genetic Algorithm Feature Selection (GAFS), we verified that the top three features were better than the randomly selected feature set.

Investigating the Impact of Discrete Emotions Using Transfer Learning Models for Emotion Analysis: A Case Study of TripAdvisor Reviews

  • Dahee Lee;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • 제34권2호
    • /
    • pp.372-399
    • /
    • 2024
  • Online reviews play a significant role in consumer purchase decisions on e-commerce platforms. To address information overload in the context of online reviews, factors that drive review helpfulness have received considerable attention from scholars and practitioners. The purpose of this study is to explore the differential effects of discrete emotions (anger, disgust, fear, joy, sadness, and surprise) on perceived review helpfulness, drawing on cognitive appraisal theory of emotion and expectation-confirmation theory. Emotions embedded in 56,157 hotel reviews collected from TripAdvisor.com were extracted based on a transfer learning model to measure emotion variables as an alternative to dictionary-based methods adopted in previous research. We found that anger and fear have positive impacts on review helpfulness, while disgust and joy exert negative impacts. Moreover, hotel star-classification significantly moderates the relationships between several emotions (disgust, fear, and joy) and perceived review helpfulness. Our results extend the understanding of review assessment and have managerial implications for hotel managers and e-commerce vendors.

학습과 기억의 뇌파 (Electroencephalography of Learning and Memory)

  • 전현진;이승환
    • 생물정신의학
    • /
    • 제23권3호
    • /
    • pp.102-107
    • /
    • 2016
  • This review will summarize EEG studies of learning and memory based on frequency bands including theta waves (4-7 Hz), gamma waves (> 30 Hz) and alpha waves (7-12 Hz). Authors searched and reviewed EEG papers especially focusing on learning and memory from PubMed. Theta waves are associated with acquisition of new information from stimuli. Gamma waves are connected with comparing and binding old information in preexisting memory and new information from stimuli. Alpha waves are linked with attention. Eventually it mediates the learning and memory process. Although EEG studies of learning and memory still have controversial issues, the future EEG studies will facilitate clinical benefits by virtue of more developed and encouraging prospects.

아동 바둑 학습이 뇌의 활성도와 정서에 미치는 영향연구 (A study on the effect of the brain activation and emotion by child Baduk study)

  • 안상균;백기자;정수현
    • 한국산학기술학회논문지
    • /
    • 제11권4호
    • /
    • pp.1436-1441
    • /
    • 2010
  • 본 연구는 바둑 학습을 하는 아동들이 학습 전과 후에 뇌 기능에 미치는 영향에 관한 연구로 바둑 학습을 하는 J시 I 바둑학원 원생 20명과 바둑 학원을 다니지 않은 대조군 20명을 대상으로 바둑 학습 전 뇌파 측정은 2008년 10월 27일부터 11월 7일까지 실시하였으며, 바둑 학습 후 뇌파 측정은 2009년 11월 2일부터 4일까지 실시하였다. 연구의 결과로 두 집단의 활성지수와 정서지수에서 유의미한 차이를 보였다. 이는 바둑 학습이 아동들의 뇌의 활성화와 정서적 안정을 주는 데 긍정적인 영향을 미쳤다고 볼 수 있다.

Emotion Recognition of Low Resource (Sindhi) Language Using Machine Learning

  • Ahmed, Tanveer;Memon, Sajjad Ali;Hussain, Saqib;Tanwani, Amer;Sadat, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.369-376
    • /
    • 2021
  • One of the most active areas of research in the field of affective computing and signal processing is emotion recognition. This paper proposes emotion recognition of low-resource (Sindhi) language. This work's uniqueness is that it examines the emotions of languages for which there is currently no publicly accessible dataset. The proposed effort has provided a dataset named MAVDESS (Mehran Audio-Visual Dataset Mehran Audio-Visual Database of Emotional Speech in Sindhi) for the academic community of a significant Sindhi language that is mainly spoken in Pakistan; however, no generic data for such languages is accessible in machine learning except few. Furthermore, the analysis of various emotions of Sindhi language in MAVDESS has been carried out to annotate the emotions using line features such as pitch, volume, and base, as well as toolkits such as OpenSmile, Scikit-Learn, and some important classification schemes such as LR, SVC, DT, and KNN, which will be further classified and computed to the machine via Python language for training a machine. Meanwhile, the dataset can be accessed in future via https://doi.org/10.5281/zenodo.5213073.

의대생들의 성적과 학업동기 및 다중지능의 관계분석 (The Relationship among the Learning Motivation, the Characteristics of Multiple Intelligence and Academic Achievement in Medical School Students)

  • 류숙희;이혜범;전우택
    • 의학교육논단
    • /
    • 제15권1호
    • /
    • pp.46-53
    • /
    • 2013
  • The purpose of this study was to analyze the relationship among medical students' learning motivation, characteristics of multiple intelligence, and academic achievement. The participants were 144 medical students. The data were collected by administering learning motivation tests (self-confidence, self-efficacy, level of task, emotion of learning, learning behavior, failure tolerance, task difficulty, and academic self-efficacy), a multiple intelligence test (linguistic intelligence, logical-mathematical intelligence, musical intelligence, bodily-kinesthetic intelligence, spatial intelligence, interpersonal intelligence, intrapersonal intelligence, and naturalistic intelligence), and two semesters of grades. There is a correlation between multiple intelligences and learning motivation. Among academic self-efficacy of academic motivation, the self-control efficacy (0.28) and behavior (0.18) subscales are significantly positively correlated with academic achievement. However, the emotion subscale (-0.18) was significantly negatively correlated. Learning motivation was correlated with two of the eight multiple intelligence profiles: the intrapersonal intelligence (0.18) and bodily-kinesthetic intelligence (-0.19). The structural equation modeling analysis showed that the behavior and self-control efficacy subscales of intrapersonal intelligence had an impact on academic achievement. An analysis according to the academic achievement group showed significant differences in self-control efficacy and emotion subscales with intrapersonal intelligence. A positive relationship can be observed between learning motivation and some characteristics of multiple intelligence of medical school students. In light of the findings, it is worth examining whether we can control medical students' learning motivation through educational programs targeting self-control efficacy and intrapersonal intelligence.

자동 감성 인식을 위한 비교사-교사 분류기의 복합 설계 (Design of Hybrid Unsupervised-Supervised Classifier for Automatic Emotion Recognition)

  • 이지은;유선국
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1294-1299
    • /
    • 2014
  • The emotion is deeply affected by human behavior and cognitive process, so it is important to do research about the emotion. However, the emotion is ambiguous to clarify because of different ways of life pattern depending on each individual characteristics. To solve this problem, we use not only physiological signal for objective analysis but also hybrid unsupervised-supervised learning classifier for automatic emotion detection. The hybrid emotion classifier is composed of K-means, genetic algorithm and support vector machine. We acquire four different kinds of physiological signal including electroencephalography(EEG), electrocardiography(ECG), galvanic skin response(GSR) and skin temperature(SKT) as well as we use 15 features extracted to be used for hybrid emotion classifier. As a result, hybrid emotion classifier(80.6%) shows better performance than SVM(31.3%).

상담 챗봇의 다차원 감정 인식 모델 (Multi-Dimensional Emotion Recognition Model of Counseling Chatbot)

  • 임명진;이명호;신주현
    • 스마트미디어저널
    • /
    • 제10권4호
    • /
    • pp.21-27
    • /
    • 2021
  • 최근 COVID-19로 인한 코로나 블루로 상담의 중요성이 높아지고 있다. 또한 비대면 서비스의 증가로 상담 매체에 변화를 준 챗봇에 관한 연구들이 활발하게 진행되고 있다. 챗봇을 통한 비대면 상담에서는 내담자의 감정을 정확하게 파악하는 것이 가장 중요하다. 하지만 내담자가 작성한 문장만으로 감정을 인식하는 데는 한계가 있으므로 더 정확한 감정 인식을 위해서는 문장에 내제되어있는 차원 감정을 인식하는 것이 필요하다. 따라서 본 논문에서는 상담 챗봇의 감정 인식 개선을 위해 원본 데이터를 데이터의 특성에 맞게 보정한 후 Word2Vec 모델을 학습하여 생성된 벡터와 문장 VAD(Valence, Arousal, Dominance)를 딥러닝 알고리즘으로 학습한 다차원 감정 인식 모델을 제안한다. 제안한 모델의 유용성 검증 방법으로 3가지 딥러닝 모델을 비교 실험한 결과로 Attention 모델을 사용했을 때 R-squared가 0.8484로 가장 좋은 성능을 보인다.

적은 양의 음성 및 텍스트 데이터를 활용한 멀티 모달 기반의 효율적인 감정 분류 기법 (Efficient Emotion Classification Method Based on Multimodal Approach Using Limited Speech and Text Data)

  • 신미르;신유현
    • 정보처리학회 논문지
    • /
    • 제13권4호
    • /
    • pp.174-180
    • /
    • 2024
  • 본 논문에서는 wav2vec 2.0과 KcELECTRA 모델을 활용하여 멀티모달 학습을 통한 감정 분류 방법을 탐색한다. 음성 데이터와 텍스트 데이터를 함께 활용하는 멀티모달 학습이 음성만을 활용하는 방법에 비해 감정 분류 성능을 유의미하게 향상시킬 수 있음이 알려져 있다. 본 연구는 자연어 처리 분야에서 우수한 성능을 보인 BERT 및 BERT 파생 모델들을 비교 분석하여 텍스트 데이터의 효과적인 특징 추출을 위한 최적의 모델을 선정하여 텍스트 처리 모델로 활용한다. 그 결과 KcELECTRA 모델이 감정 분류 작업에서 뛰어난 성능이 보임을 확인하였다. 또한, AI-Hub에 공개되어 있는 데이터 세트를 활용한 실험을 통해 텍스트 데이터를 함께 활용하면 음성 데이터만 사용할 때보다 더 적은 양의 데이터로도 더 우수한 성능을 달성할 수 있음을 발견하였다. 실험을 통해 KcELECTRA 모델을 활용한 경우가 정확도 96.57%로 가장 우수한 성능을 보였다. 이는 멀티모달 학습이 감정 분류와 같은 복잡한 자연어 처리 작업에서 의미 있는 성능 개선을 제공할 수 있음을 보여준다.