• Title/Summary/Keyword: Learning Data Model

Search Result 4,644, Processing Time 0.037 seconds

Document Image Binarization by GAN with Unpaired Data Training

  • Dang, Quang-Vinh;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.16 no.2
    • /
    • pp.8-18
    • /
    • 2020
  • Data is critical in deep learning but the scarcity of data often occurs in research, especially in the preparation of the paired training data. In this paper, document image binarization with unpaired data is studied by introducing adversarial learning, excluding the need for supervised or labeled datasets. However, the simple extension of the previous unpaired training to binarization inevitably leads to poor performance compared to paired data training. Thus, a new deep learning approach is proposed by introducing a multi-diversity of higher quality generated images. In this paper, a two-stage model is proposed that comprises the generative adversarial network (GAN) followed by the U-net network. In the first stage, the GAN uses the unpaired image data to create paired image data. With the second stage, the generated paired image data are passed through the U-net network for binarization. Thus, the trained U-net becomes the binarization model during the testing. The proposed model has been evaluated over the publicly available DIBCO dataset and it outperforms other techniques on unpaired training data. The paper shows the potential of using unpaired data for binarization, for the first time in the literature, which can be further improved to replace paired data training for binarization in the future.

Pretext Task Analysis for Self-Supervised Learning Application of Medical Data (의료 데이터의 자기지도학습 적용을 위한 pretext task 분석)

  • Kong, Heesan;Park, Jaehun;Kim, Kwangsu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.38-40
    • /
    • 2021
  • Medical domain has a massive number of data records without the response value. Self-supervised learning is a suitable method for medical data since it learns pretext-task and supervision, which the model can understand the semantic representation of data without response values. However, since self-supervised learning performance depends on the expression learned by the pretext-task, it is necessary to define an appropriate Pretext-task with data feature consideration. In this paper, to actively exploit the unlabeled medical data into artificial intelligence research, experimentally find pretext-tasks that suitable for the medical data and analyze the result. We use the x-ray image dataset which is effectively utilizable for the medical domain.

  • PDF

Development of flipped learning class model for nail beauty education (네일미용 교육을 위한 플립러닝(flipped learning) 수업모형 개발)

  • Seol, Hyun Jin
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.3
    • /
    • pp.444-454
    • /
    • 2022
  • Flipped learning research has been applied in various educational fields since 2015 and the educational effects have been discussed in previous literature. In the beauty field, flipped learning research is insufficient; in particular, it is difficult to find research on flipped learning specifically concerning nail beauty education. The purpose of this study is to develop a model for applying flipped learning to nail beauty education which should involve practical training based on theory. Such an approach is considered effective. Data were collected and analyzed focusing on previous studies with flipped learning applied as a research method. The subject of the research is "Nail Color Design 1", a common nail major elective subject at J college. The "Nail Color Design 1" course is a practice-oriented course in the form of theory and practical classes. Consequently, the flipped learning education model for nail beauty was designed by reflecting learners' needs through the ADDIE instructional design model. It was applied based on the education structure of the Pre-class, In-class, and Post-class of the PARTNER instructional learning model. This study deviates from the traditional practical education model, and has educational significance as a practical model in which flipped learning is applied to nail beauty subjects and self-reflection is derived through project practice.

Performance Evaluation of Deep Learning Model according to the Ratio of Cultivation Area in Training Data (훈련자료 내 재배지역의 비율에 따른 딥러닝 모델의 성능 평가)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1007-1014
    • /
    • 2022
  • Compact Advanced Satellite 500 (CAS500) can be used for various purposes, including vegetation, forestry, and agriculture fields. It is expected that it will be possible to acquire satellite images of various areas quickly. In order to use satellite images acquired through CAS500 in the agricultural field, it is necessary to develop a satellite image-based extraction technique for crop-cultivated areas.In particular, as research in the field of deep learning has become active in recent years, research on developing a deep learning model for extracting crop cultivation areas and generating training data is necessary. This manuscript classified the onion and garlic cultivation areas in Hapcheon-gun using PlanetScope satellite images and farm maps. In particular, for effective model learning, the model performance was analyzed according to the proportion of crop-cultivated areas. For the deep learning model used in the experiment, Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet) was reconstructed to fit the purpose of crop cultivation area classification and utilized. As a result of the experiment, the ratio of crop cultivation areas in the training data affected the performance of the deep learning model.

Hybrid Learning for Vision-and-Language Navigation Agents (시각-언어 이동 에이전트를 위한 복합 학습)

  • Oh, Suntaek;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.9
    • /
    • pp.281-290
    • /
    • 2020
  • The Vision-and-Language Navigation(VLN) task is a complex intelligence problem that requires both visual and language comprehension skills. In this paper, we propose a new learning model for visual-language navigation agents. The model adopts a hybrid learning that combines imitation learning based on demo data and reinforcement learning based on action reward. Therefore, this model can meet both problems of imitation learning that can be biased to the demo data and reinforcement learning with relatively low data efficiency. In addition, the proposed model uses a novel path-based reward function designed to solve the problem of existing goal-based reward functions. In this paper, we demonstrate the high performance of the proposed model through various experiments using both Matterport3D simulation environment and R2R benchmark dataset.

Comparative analysis of model performance for predicting the customer of cafeteria using unstructured data

  • Seungsik Kim;Nami Gu;Jeongin Moon;Keunwook Kim;Yeongeun Hwang;Kyeongjun Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.5
    • /
    • pp.485-499
    • /
    • 2023
  • This study aimed to predict the number of meals served in a group cafeteria using machine learning methodology. Features of the menu were created through the Word2Vec methodology and clustering, and a stacking ensemble model was constructed using Random Forest, Gradient Boosting, and CatBoost as sub-models. Results showed that CatBoost had the best performance with the ensemble model showing an 8% improvement in performance. The study also found that the date variable had the greatest influence on the number of diners in a cafeteria, followed by menu characteristics and other variables. The implications of the study include the potential for machine learning methodology to improve predictive performance and reduce food waste, as well as the removal of subjective elements in menu classification. Limitations of the research include limited data cases and a weak model structure when new menus or foreign words are not included in the learning data. Future studies should aim to address these limitations.

Knowledge-based learning for modeling concrete compressive strength using genetic programming

  • Tsai, Hsing-Chih;Liao, Min-Chih
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.255-265
    • /
    • 2019
  • The potential of using genetic programming to predict engineering data has caught the attention of researchers in recent years. The present paper utilized weighted genetic programming (WGP), a derivative model of genetic programming (GP), to model the compressive strength of concrete. The calculation results of Abrams' laws, which are used as the design codes for calculating the compressive strength of concrete, were treated as the inputs for the genetic programming model. Therefore, knowledge of the Abrams' laws, which is not a factor of influence on common data-based learning approaches, was considered to be a potential factor affecting genetic programming models. Significant outcomes of this work include: 1) the employed design codes positively affected the prediction accuracy of modeling the compressive strength of concrete; 2) a new equation was suggested to replace the design code for predicting concrete strength; and 3) common data-based learning approaches were evolved into knowledge-based learning approaches using historical data and design codes.

Using Machine Learning Algorithms for Housing Price Prediction: The Case of Islamabad Housing Data

  • Imran, Imran;Zaman, Umar;Waqar, Muhammad;Zaman, Atif
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.11-23
    • /
    • 2021
  • House price prediction is a significant financial decision for individuals working in the housing market as well as for potential buyers. From investment to buying a house for residence, a person investing in the housing market is interested in the potential gain. This paper presents machine learning algorithms to develop intelligent regressions models for House price prediction. The proposed research methodology consists of four stages, namely Data Collection, Pre Processing the data collected and transforming it to the best format, developing intelligent models using machine learning algorithms, training, testing, and validating the model on house prices of the housing market in the Capital, Islamabad. The data used for model validation and testing is the asking price from online property stores, which provide a reasonable estimate of the city housing market. The prediction model can significantly assist in the prediction of future housing prices in Pakistan. The regression results are encouraging and give promising directions for future prediction work on the collected dataset.

Prediction Model of Inclination to Visit Jeju Tourist Attractions based on CNN Deep Learning

  • YoungSang Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.190-198
    • /
    • 2023
  • Sentiment analysis can be applied to all texts generated from websites, blogs, messengers, etc. The study fulfills an artificial intelligence sentiment analysis estimating visiting evaluation opinions (reviews) and visitor ratings, and suggests a deep learning model which foretells either an affirmative or a negative inclination for new reviews. This study operates review big data about Jeju tourist attractions which are extracted from Google from October 1st, 2021 to November 30th, 2021. The normalization data used in the propensity prediction modeling of this study were divided into training data and test data at a 7.5:2.5 ratio, and the CNN classification neural network was used for learning. The predictive model of the research indicates an accuracy of approximately 84.72%, which shows that it can upgrade performance in the future as evaluating its error rate and learning precision.

Deep Meta Learning Based Classification Problem Learning Method for Skeletal Maturity Indication (골 성숙도 판별을 위한 심층 메타 학습 기반의 분류 문제 학습 방법)

  • Min, Jeong Won;Kang, Dong Joong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.98-107
    • /
    • 2018
  • In this paper, we propose a method to classify the skeletal maturity with a small amount of hand wrist X-ray image using deep learning-based meta-learning. General deep-learning techniques require large amounts of data, but in many cases, these data sets are not available for practical application. Lack of learning data is usually solved through transfer learning using pre-trained models with large data sets. However, transfer learning performance may be degraded due to over fitting for unknown new task with small data, which results in poor generalization capability. In addition, medical images require high cost resources such as a professional manpower and mcuh time to obtain labeled data. Therefore, in this paper, we use meta-learning that can classify using only a small amount of new data by pre-trained models trained with various learning tasks. First, we train the meta-model by using a separate data set composed of various learning tasks. The network learns to classify the bone maturity using the bone maturity data composed of the radiographs of the wrist. Then, we compare the results of the classification using the conventional learning algorithm with the results of the meta learning by the same number of learning data sets.