• Title/Summary/Keyword: Learning Data

Search Result 11,614, Processing Time 0.033 seconds

Application of transfer learning for streamflow prediction by using attention-based Informer algorithm

  • Fatemeh Ghobadi;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.165-165
    • /
    • 2023
  • Streamflow prediction is a critical task in water resources management and essential for planning and decision-making purposes. However, the streamflow prediction is challenging due to the complexity and non-linear nature of hydrological processes. The transfer learning is a powerful technique that enables a model to transfer knowledge from a source domain to a target domain, improving model performance with limited data in the target domain. In this study, we apply the transfer learning using the Informer model, which is a state-of-the-art deep learning model for streamflow prediction. The model was trained on a large-scale hydrological dataset in the source basin and then fine-tuned using a smaller dataset available in the target basin to predict the streamflow in the target basin. The results demonstrate that transfer learning using the Informer model significantly outperforms the traditional machine learning models and even other deep learning models for streamflow prediction, especially when the target domain has limited data. Moreover, the results indicate the effectiveness of streamflow prediction when knowledge transfer is used to improve the generalizability of hydrologic models in data-sparse regions.

  • PDF

Analysis of Online Behavior and Prediction of Learning Performance in Blended Learning Environments

  • JO, Il-Hyun;PARK, Yeonjeong;KIM, Jeonghyun;SONG, Jongwoo
    • Educational Technology International
    • /
    • v.15 no.2
    • /
    • pp.71-88
    • /
    • 2014
  • A variety of studies to predict students' performance have been conducted since educational data such as web-log files traced from Learning Management System (LMS) are increasingly used to analyze students' learning behaviors. However, it is still challenging to predict students' learning achievement in blended learning environment where online and offline learning are combined. In higher education, diverse cases of blended learning can be formed from simple use of LMS for administrative purposes to full usages of functions in LMS for online distance learning class. As a result, a generalized model to predict students' academic success does not fulfill diverse cases of blended learning. This study compares two blended learning classes with each prediction model. The first blended class which involves online discussion-based learning revealed a linear regression model, which explained 70% of the variance in total score through six variables including total log-in time, log-in frequencies, log-in regularities, visits on boards, visits on repositories, and the number of postings. However, the second case, a lecture-based class providing regular basis online lecture notes in Moodle show weaker results from the same linear regression model mainly due to non-linearity of variables. To investigate the non-linear relations between online activities and total score, RF (Random Forest) was utilized. The results indicate that there are different set of important variables for the two distinctive types of blended learning cases. Results suggest that the prediction models and data-mining technique should be based on the considerations of diverse pedagogical characteristics of blended learning classes.

Analyze the Open data for Natural Language Processing of Learning Counseling (학습 상담 내용의 자연어 처리를 위한 오픈 데이터 현황 분석)

  • Kim, Yu-Doo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.500-501
    • /
    • 2019
  • In the $4^{th}$ generation industry, self-directed learning is very important than Injection learning. Therefore many educational institutions has developed method of self-directed learning. In order for self-directed learning to be effective, it is more important for faculty to manage the overall process of learning rather than being directly involved in the student's academic work. Therefore, learning counseling is an important way to effectively carry out self-directed learning. In this paper, we analyze the status of open data for natural language processing that can implement the learning consultation contents so that various applications can be done through natural language processing.

  • PDF

Semi-Supervised Learning Using Kernel Estimation

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.629-636
    • /
    • 2007
  • A kernel type semi-supervised estimate is proposed. The proposed estimate is based on the penalized least squares loss and the principle of Gaussian Random Fields Model. As a result, we can estimate the label of new unlabeled data without re-computation of the algorithm that is different from the existing transductive semi-supervised learning. Also our estimate is viewed as a general form of Gaussian Random Fields Model. We give experimental evidence suggesting that our estimate is able to use unlabeled data effectively and yields good classification.

  • PDF

Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection (터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과)

  • Lee, Kyu Beom;Shin, Hyu Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.419-432
    • /
    • 2019
  • Most of deep learning model training was proceeded by supervised learning, which is to train labeling data composed by inputs and corresponding outputs. Labeling data was directly generated manually, so labeling accuracy of data is relatively high. However, it requires heavy efforts in securing data because of cost and time. Additionally, the main goal of supervised learning is to improve detection performance for 'True Positive' data but not to reduce occurrence of 'False Positive' data. In this paper, the occurrence of unpredictable 'False Positive' appears by trained modes with labeling data and 'True Positive' data in monitoring of deep learning-based CCTV accident detection system, which is under operation at a tunnel monitoring center. Those types of 'False Positive' to 'fire' or 'person' objects were frequently taking place for lights of working vehicle, reflecting sunlight at tunnel entrance, long black feature which occurs to the part of lane or car, etc. To solve this problem, a deep learning model was developed by simultaneously training the 'False Positive' data generated in the field and the labeling data. As a result, in comparison with the model that was trained only by the existing labeling data, the re-inference performance with respect to the labeling data was improved. In addition, re-inference of the 'False Positive' data shows that the number of 'False Positive' for the persons were more reduced in case of training model including many 'False Positive' data. By training of the 'False Positive' data, the capability of field application of the deep learning model was improved automatically.

A Survey of Transfer and Multitask Learning in Bioinformatics

  • Xu, Qian;Yang, Qiang
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.257-268
    • /
    • 2011
  • Machine learning and data mining have found many applications in biological domains, where we look to build predictive models based on labeled training data. However, in practice, high quality labeled data is scarce, and to label new data incurs high costs. Transfer and multitask learning offer an attractive alternative, by allowing useful knowledge to be extracted and transferred from data in auxiliary domains helps counter the lack of data problem in the target domain. In this article, we survey recent advances in transfer and multitask learning for bioinformatics applications. In particular, we survey several key bioinformatics application areas, including sequence classification, gene expression data analysis, biological network reconstruction and biomedical applications.

Agent with Low-latency Overcoming Technique for Distributed Cluster-based Machine Learning

  • Seo-Yeon, Gu;Seok-Jae, Moon;Byung-Joon, Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.157-163
    • /
    • 2023
  • Recently, as businesses and data types become more complex and diverse, efficient data analysis using machine learning is required. However, since communication in the cloud environment is greatly affected by network latency, data analysis is not smooth if information delay occurs. In this paper, SPT (Safe Proper Time) was applied to the cluster-based machine learning data analysis agent proposed in previous studies to solve this delay problem. SPT is a method of remotely and directly accessing memory to a cluster that processes data between layers, effectively improving data transfer speed and ensuring timeliness and reliability of data transfer.

An Implementation of Federated Learning based on Blockchain (블록체인 기반의 연합학습 구현)

  • Park, June Beom;Park, Jong Sou
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.89-96
    • /
    • 2020
  • Deep learning using an artificial neural network has been recently researched and developed in various fields such as image recognition, big data and data analysis. However, federated learning has emerged to solve issues of data privacy invasion and problems that increase the cost and time required to learn. Federated learning presented learning techniques that would bring the benefits of distributed processing system while solving the problems of existing deep learning, but there were still problems with server-client system and motivations for providing learning data. So, we replaced the role of the server with a blockchain system in federated learning, and conducted research to solve the privacy and security problems that are associated with federated learning. In addition, we have implemented a blockchain-based system that motivates users by paying compensation for data provided by users, and requires less maintenance costs while maintaining the same accuracy as existing learning. In this paper, we present the experimental results to show the validity of the blockchain-based system, and compare the results of the existing federated learning with the blockchain-based federated learning. In addition, as a future study, we ended the thesis by presenting solutions to security problems and applicable business fields.

Improving learning outcome prediction method by applying Markov Chain (Markov Chain을 응용한 학습 성과 예측 방법 개선)

  • Chul-Hyun Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.595-600
    • /
    • 2024
  • As the use of artificial intelligence technologies such as machine learning increases in research fields that predict learning outcomes or optimize learning pathways, the use of artificial intelligence in education is gradually making progress. This research is gradually evolving into more advanced artificial intelligence methods such as deep learning and reinforcement learning. This study aims to improve the method of predicting future learning performance based on the learner's past learning performance-history data. Therefore, to improve prediction performance, we propose conditional probability applying the Markov Chain method. This method is used to improve the prediction performance of the classifier by allowing the learner to add learning history data to the classification prediction in addition to classification prediction by machine learning. In order to confirm the effectiveness of the proposed method, a total of more than 30 experiments were conducted per algorithm and indicator using empirical data, 'Teaching aid-based early childhood education learning performance data'. As a result of the experiment, higher performance indicators were confirmed in cases using the proposed method than in cases where only the classification algorithm was used in all cases.

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.