• Title/Summary/Keyword: Learning Center

Search Result 2,166, Processing Time 0.035 seconds

A Comparative Study on the Possibility of Land Cover Classification of the Mosaic Images on the Korean Peninsula (한반도 모자이크 영상의 토지피복분류 활용 가능성 탐색을 위한 비교 연구)

  • Moon, Jiyoon;Lee, Kwang Jae
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1319-1326
    • /
    • 2019
  • The KARI(Korea Aerospace Research Institute) operates the government satellite information application consultation to cope with ever-increasing demand for satellite images in the public sector, and carries out various support projects including the generation and provision of mosaic images on the Korean Peninsula every year to enhance user convenience and promote the use of satellite images. In particular, the government has wanted to increase the utilization of mosaic images on the Korean Peninsula and seek to classify and update mosaic images so that users can use them in their businesses easily. However, it is necessary to test and verify whether the classification results of the mosaic images can be utilized in the field since the original spectral information is distorted during pan-sharpening and color balancing, and there is a limitation that only R, G, and B bands are provided. Therefore, in this study, the reliability of the classification result of the mosaic image was compared to the result of KOMPSAT-3 image. The study found that the accuracy of the classification result of KOMPSAT-3 image was between 81~86% (overall accuracy is about 85%), while the accuracy of the classification result of mosaic image was between 69~72% (overall accuracy is about 72%). This phenomenon is interpreted not only because of the distortion of the original spectral information through pan-sharpening and mosaic processes, but also because NDVI and NDWI information were extracted from KOMPSAT-3 image rather than from the mosaic image, as only three color bands(R, G, B) were provided. Although it is deemed inadequate to distribute classification results extracted from mosaic images at present, it is believed that it will be necessary to explore ways to minimize the distortion of spectral information when making mosaic images and to develop classification techniques suitable for mosaic images as well as the provision of NIR band information. In addition, it is expected that the utilization of images with limited spectral information could be increased in the future if related research continues, such as the comparative analysis of classification results by geomorphological characteristics and the development of machine learning methods for image classification by objects of interest.

KoFlux's Progress: Background, Status and Direction (KoFlux 역정: 배경, 현황 및 향방)

  • Kwon, Hyo-Jung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.241-263
    • /
    • 2010
  • KoFlux is a Korean network of micrometeorological tower sites that use eddy covariance methods to monitor the cycles of energy, water, and carbon dioxide between the atmosphere and the key terrestrial ecosystems in Korea. KoFlux embraces the mission of AsiaFlux, i.e. to bring Asia's key ecosystems under observation to ensure quality and sustainability of life on earth. The main purposes of KoFlux are to provide (1) an infrastructure to monitor, compile, archive and distribute data for the science community and (2) a forum and short courses for the application and distribution of knowledge and data between scientists including practitioners. The KoFlux community pursues the vision of AsiaFlux, i.e., "thinking community, learning frontiers" by creating information and knowledge of ecosystem science on carbon, water and energy exchanges in key terrestrial ecosystems in Asia, by promoting multidisciplinary cooperations and integration of scientific researches and practices, and by providing the local communities with sustainable ecosystem services. Currently, KoFlux has seven sites in key terrestrial ecosystems (i.e., five sites in Korea and two sites in the Arctic and Antarctic). KoFlux has systemized a standardized data processing based on scrutiny of the data observed from these ecosystems and synthesized the processed data for constructing database for further uses with open access. Through publications, workshops, and training courses on a regular basis, KoFlux has provided an agora for building networks, exchanging information among flux measurement and modelling experts, and educating scientists in flux measurement and data analysis. Despite such persistent initiatives, the collaborative networking is still limited within the KoFlux community. In order to break the walls between different disciplines and boost up partnership and ownership of the network, KoFlux will be housed in the National Center for Agro-Meteorology (NCAM) at Seoul National University in 2011 and provide several core services of NCAM. Such concerted efforts will facilitate the augmentation of the current monitoring network, the education of the next-generation scientists, and the provision of sustainable ecosystem services to our society.

The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring (광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈)

  • Yang, Hyunyoung;Kang, Minseok;Kim, Joon;Ryu, Daun;Kim, Su-Jin;Chun, Jung-Hwa;Lim, Jong-Hwan;Park, Chan Woo;Yun, Soon Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.198-221
    • /
    • 2021
  • After large-scale reforestation in the 1960s and 1970s, forests in Korea have gradually been aging. Net ecosystem CO2 exchange of old-growth forests is theoretically near zero; however, it can be a CO2 sink or source depending on the intervention of disturbance or management. In this study, we report the CO2 budget dynamics of the Gwangneung deciduous old-growth forest (GDK) in Korea and examined the following two questions: (1) is the preserved GDK indeed CO2 neutral as theoretically known? and (2) can we explain the dynamics of CO2 budget by the common mechanisms reported in the literature? To answer, we analyzed the 15-year long CO2 flux data measured by eddy covariance technique along with other biometeorological data at the KoFlux GDK site from 2006 to 2020. The results showed that (1) GDK switched back-and-forth between sink and source of CO2 but averaged to be a week CO2 source (and turning to a moderate CO2 source for the recent five years) and (2) the interannual variability of solar radiation, growing season length, and leaf area index showed a positive correlation with that of gross primary production (GPP) (R2=0.32~0.45); whereas the interannual variability of both air and surface temperature was not significantly correlated with that of ecosystem respiration (RE). Furthermore, the machine learning-based model trained using the dataset of early monitoring period (first 10 years) failed to reproduce the observed interannual variations of GPP and RE for the recent five years. Biomass data analysis suggests that carbon emissions from coarse woody debris may have contributed partly to the conversion to a moderate CO2 source. To properly understand and interpret the long-term CO2 budget dynamics of GDK, new framework of analysis and modeling based on complex systems science is needed. Also, it is important to maintain the flux monitoring and data quality along with the monitoring of coarse woody debris and disturbances.

Abnormal Water Temperature Prediction Model Near the Korean Peninsula Using LSTM (LSTM을 이용한 한반도 근해 이상수온 예측모델)

  • Choi, Hey Min;Kim, Min-Kyu;Yang, Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.265-282
    • /
    • 2022
  • Sea surface temperature (SST) is a factor that greatly influences ocean circulation and ecosystems in the Earth system. As global warming causes changes in the SST near the Korean Peninsula, abnormal water temperature phenomena (high water temperature, low water temperature) occurs, causing continuous damage to the marine ecosystem and the fishery industry. Therefore, this study proposes a methodology to predict the SST near the Korean Peninsula and prevent damage by predicting abnormal water temperature phenomena. The study area was set near the Korean Peninsula, and ERA5 data from the European Center for Medium-Range Weather Forecasts (ECMWF) was used to utilize SST data at the same time period. As a research method, Long Short-Term Memory (LSTM) algorithm specialized for time series data prediction among deep learning models was used in consideration of the time series characteristics of SST data. The prediction model predicts the SST near the Korean Peninsula after 1- to 7-days and predicts the high water temperature or low water temperature phenomenon. To evaluate the accuracy of SST prediction, Coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) indicators were used. The summer (JAS) 1-day prediction result of the prediction model, R2=0.996, RMSE=0.119℃, MAPE=0.352% and the winter (JFM) 1-day prediction result is R2=0.999, RMSE=0.063℃, MAPE=0.646%. Using the predicted SST, the accuracy of abnormal sea surface temperature prediction was evaluated with an F1 Score (F1 Score=0.98 for high water temperature prediction in summer (2021/08/05), F1 Score=1.0 for low water temperature prediction in winter (2021/02/19)). As the prediction period increased, the prediction model showed a tendency to underestimate the SST, which also reduced the accuracy of the abnormal water temperature prediction. Therefore, it is judged that it is necessary to analyze the cause of underestimation of the predictive model in the future and study to improve the prediction accuracy.

The Science-Related Attitudes from Adults' Experiences during Science Cultural Activities: Focusing on the Case of Science Fiction Discussions (성인들의 과학문화 활동 경험에서 나타난 과학 관련 태도 -과학소설 독서토론 활동 사례를 중심으로-)

  • Eunji Kang;Chaeyeon Shin;Jinwoong Song
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.2
    • /
    • pp.139-150
    • /
    • 2023
  • This study started with the awareness of the need to explore various aspects of science education and was conducted according to the necessity of practical research on science cultural activities targeting adults. Accordingly, adults' book discussions of science fiction were selected as research cases, and science-related attitudes in science cultural activities were explored. There are four participants in the study, all of whom have engaged in a book club and have not majored or are working in science disciplines. Three science fictions were selected after establishing specific standards for the selection discussed with participants. For four months, a total of three unstructured book discussions of science fiction, post-interviews for each discussion, and in-depth individual interviews after the end of the entire activity were conducted. Various data such as recorded and transcribed reading discussion discourse, post- and in-depth individual interviews, researchers' observation records, and participants' book journals were collected and analyzed using a continuous comparison method. As a result of the study, as scientific thinking is illustrated in SF, the participants also demonstrated scientific attitudes during their discussions. In addition, the textual feature(storytelling) of science fiction was found to lessen cognitive overload and the burden of understanding science by providing scientific knowledge with context. Finally they demonstrated a shift in attitude toward science, valuing science cultural activities in themselves, rather than simply viewing science as a subject of understanding and learning. The conclusions and meanings of this study based on the above results are presented to enhance a positive attitude toward science for adults even after school education.

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.

A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait (인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로)

  • Lee, JeongSeon;Suh, Bomil;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.231-252
    • /
    • 2021
  • Artificial intelligence (AI) is a key technology that will change the future the most. It affects the industry as a whole and daily life in various ways. As data availability increases, artificial intelligence finds an optimal solution and infers/predicts through self-learning. Research and investment related to automation that discovers and solves problems on its own are ongoing continuously. Automation of artificial intelligence has benefits such as cost reduction, minimization of human intervention and the difference of human capability. However, there are side effects, such as limiting the artificial intelligence's autonomy and erroneous results due to algorithmic bias. In the labor market, it raises the fear of job replacement. Prior studies on the utilization of artificial intelligence have shown that individuals do not necessarily use the information (or advice) it provides. Algorithm error is more sensitive than human error; so, people avoid algorithms after seeing errors, which is called "algorithm aversion." Recently, artificial intelligence has begun to be understood from the perspective of the augmentation of human intelligence. We have started to be interested in Human-AI collaboration rather than AI alone without human. A study of 1500 companies in various industries found that human-AI collaboration outperformed AI alone. In the medicine area, pathologist-deep learning collaboration dropped the pathologist cancer diagnosis error rate by 85%. Leading AI companies, such as IBM and Microsoft, are starting to adopt the direction of AI as augmented intelligence. Human-AI collaboration is emphasized in the decision-making process, because artificial intelligence is superior in analysis ability based on information. Intuition is a unique human capability so that human-AI collaboration can make optimal decisions. In an environment where change is getting faster and uncertainty increases, the need for artificial intelligence in decision-making will increase. In addition, active discussions are expected on approaches that utilize artificial intelligence for rational decision-making. This study investigates the impact of artificial intelligence on decision-making focuses on human-AI collaboration and the interaction between the decision maker personal traits and advisor type. The advisors were classified into three types: human, artificial intelligence, and human-AI collaboration. We investigated perceived usefulness of advice and the utilization of advice in decision making and whether the decision-maker's personal traits are influencing factors. Three hundred and eleven adult male and female experimenters conducted a task that predicts the age of faces in photos and the results showed that the advisor type does not directly affect the utilization of advice. The decision-maker utilizes it only when they believed advice can improve prediction performance. In the case of human-AI collaboration, decision-makers higher evaluated the perceived usefulness of advice, regardless of the decision maker's personal traits and the advice was more actively utilized. If the type of advisor was artificial intelligence alone, decision-makers who scored high in conscientiousness, high in extroversion, or low in neuroticism, high evaluated the perceived usefulness of the advice so they utilized advice actively. This study has academic significance in that it focuses on human-AI collaboration that the recent growing interest in artificial intelligence roles. It has expanded the relevant research area by considering the role of artificial intelligence as an advisor of decision-making and judgment research, and in aspects of practical significance, suggested views that companies should consider in order to enhance AI capability. To improve the effectiveness of AI-based systems, companies not only must introduce high-performance systems, but also need employees who properly understand digital information presented by AI, and can add non-digital information to make decisions. Moreover, to increase utilization in AI-based systems, task-oriented competencies, such as analytical skills and information technology capabilities, are important. in addition, it is expected that greater performance will be achieved if employee's personal traits are considered.

Research Framework for International Franchising (국제프랜차이징 연구요소 및 연구방향)

  • Kim, Ju-Young;Lim, Young-Kyun;Shim, Jae-Duck
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.61-118
    • /
    • 2008
  • The purpose of this research is to construct research framework for international franchising based on existing literature and to identify research components in the framework. Franchise can be defined as management styles that allow franchisee use various management assets of franchisor in order to make or sell product or service. It can be divided into product distribution franchise that is designed to sell products and business format franchise that is designed for running it as business whatever its form is. International franchising can be defined as a way of internationalization of franchisor to foreign country by providing its business format or package to franchisee of host country. International franchising is growing fast for last four decades but academic research on this is quite limited. Especially in Korea, research about international franchising is carried out on by case study format with single case or empirical study format with survey based on domestic franchise theory. Therefore, this paper tries to review existing literature on international franchising research, providing research framework, and then stimulating new research on this field. International franchising research components include motives and environmental factors for decision of expanding to international franchising, entrance modes and development plan for international franchising, contracts and management strategy of international franchising, and various performance measures from different perspectives. First, motives of international franchising are fee collection from franchisee. Also it provides easier way to expanding to foreign country. The other motives including increase total sales volume, occupying better strategic position, getting quality resources, and improving efficiency. Environmental factors that facilitating international franchising encompasses economic condition, trend, and legal or political factors in host and/or home countries. In addition, control power and risk management capability of franchisor plays critical role in successful franchising contract. Final decision to enter foreign country via franchising is determined by numerous factors like history, size, growth, competitiveness, management system, bonding capability, industry characteristics of franchisor. After deciding to enter into foreign country, franchisor needs to set entrance modes of international franchising. Within contractual mode, there are master franchising and area developing franchising, licensing, direct franchising, and joint venture. Theories about entrance mode selection contain concepts of efficiency, knowledge-based approach, competence-based approach, agent theory, and governance cost. The next step after entrance decision is operation strategy. Operation strategy starts with selecting a target city and a target country for franchising. In order to finding, screening targets, franchisor needs to collect information about candidates. Critical information includes brand patent, commercial laws, regulations, market conditions, country risk, and industry analysis. After selecting a target city in target country, franchisor needs to select franchisee, in other word, partner. The first important criteria for selecting partners are financial credibility and capability, possession of real estate. And cultural similarity and knowledge about franchisor and/or home country are also recognized as critical criteria. The most important element in operating strategy is legal document between franchisor and franchisee with home and host countries. Terms and conditions in legal documents give objective information about characteristics of franchising agreement for academic research. Legal documents have definitions of terminology, territory and exclusivity, agreement of term, initial fee, continuing fees, clearing currency, and rights about sub-franchising. Also, legal documents could have terms about softer elements like training program and operation manual. And harder elements like law competent court and terms of expiration. Next element in operating strategy is about product and service. Especially for business format franchising, product/service deliverable, benefit communicators, system identifiers (architectural features), and format facilitators are listed for product/service strategic elements. Another important decision on product/service is standardization vs. customization. The rationale behind standardization is cost reduction, efficiency, consistency, image congruence, brand awareness, and competitiveness on price. Also standardization enables large scale R&D and innovative change in management style. Another element in operating strategy is control management. The simple way to control franchise contract is relying on legal terms, contractual control system. There are other control systems, administrative control system and ethical control system. Contractual control system is a coercive source of power, but franchisor usually doesn't want to use legal power since it doesn't help to build up positive relationship. Instead, self-regulation is widely used. Administrative control system uses control mechanism from ordinary work relationship. Its main component is supporting activities to franchisee and communication method. For example, franchisor provides advertising, training, manual, and delivery, then franchisee follows franchisor's direction. Another component is building franchisor's brand power. The last research element is performance factor of international franchising. Performance elements can be divided into franchisor's performance and franchisee's performance. The conceptual performance measures of franchisor are simple but not easy to obtain objectively. They are profit, sale, cost, experience, and brand power. The performance measures of franchisee are mostly about benefits of host country. They contain small business development, promotion of employment, introduction of new business model, and level up technology status. There are indirect benefits, like increase of tax, refinement of corporate citizenship, regional economic clustering, and improvement of international balance. In addition to those, host country gets socio-cultural change other than economic effects. It includes demographic change, social trend, customer value change, social communication, and social globalization. Sometimes it is called as westernization or McDonaldization of society. In addition, the paper reviews on theories that have been frequently applied to international franchising research, such as agent theory, resource-based view, transaction cost theory, organizational learning theory, and international expansion theories. Resource based theory is used in strategic decision based on resources, like decision about entrance and cooperation depending on resources of franchisee and franchisor. Transaction cost theory can be applied in determination of mutual trust or satisfaction of franchising players. Agent theory tries to explain strategic decision for reducing problem caused by utilizing agent, for example research on control system in franchising agreements. Organizational Learning theory is relatively new in franchising research. It assumes organization tries to maximize performance and learning of organization. In addition, Internalization theory advocates strategic decision of direct investment for removing inefficiency of market transaction and is applied in research on terms of contract. And oligopolistic competition theory is used to explain various entry modes for international expansion. Competency theory support strategic decision of utilizing key competitive advantage. Furthermore, research methodologies including qualitative and quantitative methodologies are suggested for more rigorous international franchising research. Quantitative research needs more real data other than survey data which is usually respondent's judgment. In order to verify theory more rigorously, research based on real data is essential. However, real quantitative data is quite hard to get. The qualitative research other than single case study is also highly recommended. Since international franchising has limited number of applications, scientific research based on grounded theory and ethnography study can be used. Scientific case study is differentiated with single case study on its data collection method and analysis method. The key concept is triangulation in measurement, logical coding and comparison. Finally, it provides overall research direction for international franchising after summarizing research trend in Korea. International franchising research in Korea has two different types, one is for studying Korean franchisor going overseas and the other is for Korean franchisee of foreign franchisor. Among research on Korean franchisor, two common patterns are observed. First of all, they usually deal with success story of one franchisor. The other common pattern is that they focus on same industry and country. Therefore, international franchise research needs to extend their focus to broader subjects with scientific research methodology as well as development of new theory.

  • PDF

FAMILY DYNAMICS OF INCEST PERCEIVED BY ADOLESECENTS (청소년이 지각한 근친상간의 가족역동)

  • Kim, Hun-Soo;Shin, Hwa-Sik
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.6 no.1
    • /
    • pp.56-64
    • /
    • 1995
  • Family is a primary unit of the major socialization processing for children. Parents among the family members are one of the most important figures from whom the child and adolescent acquire a wide variety of behavior patterns, attitudes, values and norms. An organization of family members product family structural functioning. Abnormal family structure is one of the most important reference models in the learning of antisocial patterns of behavior. Therefore incest and child sexual abuse including spouse abuse, elderly abuse, and neglect occurs in the abnormal family structural setting. In particular, incest, a specific form of sexual abuse, was once thought to be a phenomenon of great rarity, but our clinical experiences, especially over the past decade, have made us aware that incest and child sexual abuse is not rare case and on the increasing trend. Therefore, the aim of this study was to determine the family problem and dynamics of incest family, and character pattern of post-incest adolescent victim in Korea. A total of 1,838 adolescents from middle and high school(1,237) and juvenile correctional institute(601) were studied, sampled from Korean student population and adolescent delinquent population confined in juvenile correctional institutes, using proportional stratified random sampling method. The subjects' ages ranged from 12 to 21 years. Data were collected through questionnaire survey. Data analysis was done by IBM PC of Behavior Science Center at the Korea university, using SAS program. Statistical methods employed were Chi-square, principal component analysis and t-test etc. The results of this study were as follows ; 1) Of 1,071 subjects, 40(3.7%) reported incest experiences(sibling incest : 1.6% ; another type of incest : 2.1%) in their family setting. 2) The character pattern of post-incest adolescent victim was more socially maladjusted, immature, impulsive, rigid, anxious and dependent than non-incest adolescent. Also they showed some problem in academic performance and their assertiveness. 3) The other family members of incest family revealed more psychological and behavioral problem such as depression, alcoholism, psychotic disorder and criminal act than the non-incest family, even though there is no evidence of the context between them. 4) The family dynamics of incest family tended to be dysfunctional trend, as compared with non-incest family. It showed that the psychological instability of family member, parental rejection toward their children, coldness and indifference among family member and marital discordance between the parents had significant correlation with incest.

  • PDF

Strategy for Store Management Using SOM Based on RFM (RFM 기반 SOM을 이용한 매장관리 전략 도출)

  • Jeong, Yoon Jeong;Choi, Il Young;Kim, Jae Kyeong;Choi, Ju Choel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.93-112
    • /
    • 2015
  • Depending on the change in consumer's consumption pattern, existing retail shop has evolved in hypermarket or convenience store offering grocery and daily products mostly. Therefore, it is important to maintain the inventory levels and proper product configuration for effectively utilize the limited space in the retail store and increasing sales. Accordingly, this study proposed proper product configuration and inventory level strategy based on RFM(Recency, Frequency, Monetary) model and SOM(self-organizing map) for manage the retail shop effectively. RFM model is analytic model to analyze customer behaviors based on the past customer's buying activities. And it can differentiates important customers from large data by three variables. R represents recency, which refers to the last purchase of commodities. The latest consuming customer has bigger R. F represents frequency, which refers to the number of transactions in a particular period and M represents monetary, which refers to consumption money amount in a particular period. Thus, RFM method has been known to be a very effective model for customer segmentation. In this study, using a normalized value of the RFM variables, SOM cluster analysis was performed. SOM is regarded as one of the most distinguished artificial neural network models in the unsupervised learning tool space. It is a popular tool for clustering and visualization of high dimensional data in such a way that similar items are grouped spatially close to one another. In particular, it has been successfully applied in various technical fields for finding patterns. In our research, the procedure tries to find sales patterns by analyzing product sales records with Recency, Frequency and Monetary values. And to suggest a business strategy, we conduct the decision tree based on SOM results. To validate the proposed procedure in this study, we adopted the M-mart data collected between 2014.01.01~2014.12.31. Each product get the value of R, F, M, and they are clustered by 9 using SOM. And we also performed three tests using the weekday data, weekend data, whole data in order to analyze the sales pattern change. In order to propose the strategy of each cluster, we examine the criteria of product clustering. The clusters through the SOM can be explained by the characteristics of these clusters of decision trees. As a result, we can suggest the inventory management strategy of each 9 clusters through the suggested procedures of the study. The highest of all three value(R, F, M) cluster's products need to have high level of the inventory as well as to be disposed in a place where it can be increasing customer's path. In contrast, the lowest of all three value(R, F, M) cluster's products need to have low level of inventory as well as to be disposed in a place where visibility is low. The highest R value cluster's products is usually new releases products, and need to be placed on the front of the store. And, manager should decrease inventory levels gradually in the highest F value cluster's products purchased in the past. Because, we assume that cluster has lower R value and the M value than the average value of good. And it can be deduced that product are sold poorly in recent days and total sales also will be lower than the frequency. The procedure presented in this study is expected to contribute to raising the profitability of the retail store. The paper is organized as follows. The second chapter briefly reviews the literature related to this study. The third chapter suggests procedures for research proposals, and the fourth chapter applied suggested procedure using the actual product sales data. Finally, the fifth chapter described the conclusion of the study and further research.