• Title/Summary/Keyword: Lean-premixed

Search Result 208, Processing Time 0.024 seconds

A Study on Interacting $CH_4$-Air and $H_2/N_2$-Air Premixed Counterflow Flames (상호작용하는 메탄-수소 예혼합 대향류화염에 관한 연구)

  • Moon, Chang-Woo;Park, Jeong;Gwon, O.-Bung;Bae, Dae-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.38-42
    • /
    • 2010
  • Using a counterflow burner, downstream interactions between $CH_4$-air and $H_2/N_2$-Air premixed flames with various equivalence ratios has been experimentally investigated. Flame stability maps on triple and twin flames are provided in terms of global strain rate and equivalence ratio. Lean and rich flammable limits are examined for methane/air and hydrogen/nitrogen/air mixtures over the entire range of mixture concentrations in the interacting flames. Results show that these flammable limits can be significantly modified in the presence of interaction such that mixture conditions beyond the flammability limit can be still burn if it is supported by stronger flame. The experiment also discusses various oscillatory instabilities in a stability map.

A study on the combustion instability in a bluffbody dump combustor (가스터빈 연소기의 화염 불안정성에 관한 연구)

  • Lee, Byeong-Jun;Preston, L.H.;Santavicca, D.A.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1022-1029
    • /
    • 1998
  • The relation of the inlet fuel distribution, velocity, and overall equivalence ratio to the stability of a lean burning no-swirl dump combustor was examined. Premixed or partially premixed natural gas was introduced into the air stream, which flowed to the dump region through an annular inlet pipe. Inlet air was preheated upto 400 deg.C. Combustion instability was observed to occur at higher value of equivalence ratio (> 0.6) as the degree of unpremixedness was increased. Instabilities exhibited a dominant frequency of ~ 500 Hz, which corresponded to a half wave mode of combustor. CH chemiluminescence and pressure fluctuations were in-phase when combustion instabilities occurred. Acetone LIF images revealed that there was a strong fuel concentration gradient across the inlet annulus. Phase resolved OH LIF images showed that inlet fuel distribution was affected by the combustion instabilities.

Effect of Mixing Section Resonance Mode on Dynamic Combustion Characteristics in a Swirl-Stabilized Combustor (스월-안정화 연소기에서 혼합기 공진모드가 동적 연소특성에 미치는 영향)

  • Han, Sunwoo;Lee, Shinwoo;Hwang, Donghyun;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • Hot-firing tests were performed to experimentally confirm the effect of the eigenmode in the fuel-air mixing section on combustion instability by changing mixing section length, inlet mean velocity, equivalence ratio, and swirler geometry. A premixed gas composed of air and ethylene was supplied to the combustion chamber through an mixing section and an axial swirler. As the mixing section length increased, the inlet velocity perturbation decreased, but the combustion instability increased more. It was found that the resonance frequency of the first longitudinal mode in the mixing section shifted to the third longitudinal mode as the length of the mixing section increased. The results implied that the transition of the resonace frquency by changing the length of the mixing section might cause combustion instability.

Nitric Oxide and Carbon Monoxide Emission from a Premixed Flame Stabilized in a Porous Ceramic Matrix Burner (세라믹 매트릭스 버너에 형성된 예혼합 화염의 NOx 및 CO 배출특성)

  • Jeong, Jong-Su;Lee, Gyo-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3243-3250
    • /
    • 1996
  • Emission characteristics of nitric oxides and carbon monoxide from a porous media combustor has been experiment studied. The relationship between the change of flame shape and emission has also been examined. As the equivalence ratio decreases, the flame shape on the ceramic matrix plate changes from a diffusion flame, R(radiant)-type flame, to B(Blue)-type flame. With large fuel flow rate, R-type flame turns to be two dimensional R-II type flame around the equivalence of 0.7. Carbon monoxide emission increases very rapid with decreasing equivalence ratio. It changes a lot from some 10 ppm to 100-10,000 ppm with the change of flame type from R-I to R-II type. Nitric oxide emission from the premixed burner is less than 25 ppm over all range of fuel flow rate, which is less than 20% of NOx emission from conventional gas burners.

Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner (이중 연료 분사구조를 갖는 희박-예혼합 버너의 연소특성 연구)

  • Jang, Jae Hwan;Cho, Ju Hyeong;Kim, Han Seok;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • This study aims to experimentally investigate the combustion characteristics of a lean premixed swirl-stabilized burner with dual-stage fuel injection arrays. The results show that a variation in the fuel distribution to fuel stages 1 (upstream) and 2 (downstream) produces a noticeable change in the NOx and CO emissions. Reducing the confined ratio, defined as the ratio of the nozzle exit diameter to the liner diameter, may reduce NOx and CO emissions owing to reduced combustion loading and longer residence time, respectively. A nozzle exit velocity of 30 m/s shows the optimum characteristics in terms of NOx and CO emissions and flame stability: increasing or decreasing the nozzle exit velocity leads to a degradation in emissions or flame stability, respectively.

Eco-machinery Engineering Technology for Reducing NOx Emission (질소산화물과 관련한 환경기계기술)

  • Ahn, Kook-Young;Kim, Han-Seok;Cha, Min-Seok;Lee, Jin-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.301-310
    • /
    • 2003
  • Eco-Machinery engineering technologies in KIMM for reducing NOx emission were introduced. Combustion technologies such as reburning and fuel staged or air staged combustion have been applied to reduce NOx emission in the field of boiler furnaces. Lean premixed combustion method have been studied in gas turbine combustor. Hybrid system with plasma and SCR being considered as prospective method of De-NOx has been developed. Also, low NOx technologies including common rail system, EGR and DPF in diesel engine have been investigated.

  • PDF

Effect of Ignition Energy Characteristics on the Ignition and the Combustion of a Premixed Gas(2) (점화에너지 특성이 예혼합기의 착화와 연소에 미치는 영향(2))

  • 이중순;강병무;김현수;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.183-191
    • /
    • 1997
  • For the improvement of ignitability we need ignition energy and its discharge characteristics which are suitable for a part distribution of the mixture density around the ignition spark plug and the flow characteristics of the mixture in the combustion. Especially, for the solving of the instability of initial ignition and lean ignitability limit in the case of lean-burn combustion, the more powerful ignition energy is required. The conclusions from the observation can be summarized as follows: 1) The ignitability limit for HIS expands wider and the combustion is more stable than for CDI. 2) The combustion duration and ignition timing depend upon the distribution of local mixture density in the vicinity of ignition spark plug.

  • PDF

An Experimental Study on Combustion Instability Mechanism in a Dump Gas Turbine Combustor (모형 가스터빈 연소기내 연소불안정성에 대한 실험적 연구)

  • Lee, Youn-Joo;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.853-858
    • /
    • 2001
  • The knowledge of flame structure is essential for control of combustion instability phenomena. Some results of an experimental study on mechanism of naturally occurring combustion oscillations with a single dominant frequency are presented. Tests were conducted in a laboratory-scale dump combustor at atmospheric pressure. Sound level meter was used to track the pressure wave inside the combustor. The observed instability was a longitudinal mode with a frequency of $\sim341.8Hz$. Instability map was obtained at the condition of inlet temperature of $360^{\circ}C$, mean velocities of $8.5\sim10.8m/s$ and well premixed mixture. It showed that combustion instability was susceptible to occur in the lean conditions. In this study, unstable flame was observed from stoichiometric to 0.7 in overall equivalence ratio. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various mean velocities. As mean velocity is increased, the flame grows and global heat release was changed. Due to these effects, combustion instability can be maintained at more lean air-fuel ratio. Also, these results give an insight to the controlling mechanism for an increasing heat release at maximum pressure.

  • PDF

A Study on NOx Emission Characteristics of An Industrial Gas Turbine (산업용 가스터빈의 NOx 배출 특성에 관한 연구)

  • Jeong, Jai-Mo;Park, Jung-Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.11-17
    • /
    • 2004
  • The purposes of this study are to analyze nitrogen oxides(NOx) formation mechanism and to reduce abnormal NOx emissions in gas turbines. Industrial gas turbines emissions have potential to negative affect to the atmosphere in many different ways such as photochemical smog, acid rain and global warming. In conventional gas turbine combustors, one of the main pollutants such as nitrogen oxide(NOx) species, are principally formed from combustion process of fuel with oxygen in the primary combustion zone, and their emission levels are highly depend on peak temperatures in the combustor. In order to examine the characteristics and the effect of NOx formation, we used gas turbine of which commercial operating in Korea. From the examination, it has been found that NOx emissions are relatively high at low load(output) and during combustion mode change. Also, the effect of Air/Fuel ratio was considered. As the Air/Fuel ratio was increased in Lean-Lean mode, the NOx emission was decreased. The results of this study indicated that NOx emission levels are highly depend on peak temperature and pressure of combustion process in the combustor.

  • PDF

Note on Nonlinearity of Combustion Instability (연소 불안정 현상의 비선형적 특성 고찰)

  • 서성현
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.240-243
    • /
    • 2003
  • Combustion instability phenomena have been observed in various different combustion systems. For each specific combustion system, pressure fluctuations measured during high frequency combustion instability presented many different characteristics. High frequency instability occurring in a lean premixed gas turbine combustor mar be dominantly affected by a nonlinear relation between pressure oscillations and heat release rate fluctuations, and gas dynamics plays a crucial role in determining an amplitude of a limit cycle for a liquid rocket thrust chamber. Combustion instability phenomena manifest their inherent nonlinear characteristics. One is a limit cycle and the other bifurcation described by nonlinear time series analysis.

  • PDF