• 제목/요약/키워드: Lean burn

검색결과 134건 처리시간 0.024초

대형 CNG기관의 직접분사화에 의한 희박한계확장 (A study on expansion of lean burn limit with direct injection of the heavy-duty CNG engine)

  • 박정일;정찬문;노기철;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3282-3287
    • /
    • 2007
  • Lean combustion is one of the most promising method for increasing engine efficiency and reducing the exhaust emission from SI gas engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate are needed to guarantee a successful subsequent combustion. Experiment data were obtained on a single-cylinder CNG fueled SI engine to investigate the effect of direct injection, spark timing and variation of injection timing. Experimental results show that lean burn limit is ${\lambda}$=1.3 with port injection, and expansion of lean burn limit ${\lambda}$=1.4 with direct injection method, due to increase of turbulence intensity in cylinder and stratified charge. Combustion duration in lean region is improved by using the variation of injection timing.

  • PDF

전부하시 희박영역에서의 천연가스엔진 성능향상에 관한 연구 (A Study on the Performance Improvement for a Natural Gas Engine under Lean Burn & WOT Condition)

  • 김창업;김창기;김승수;방효선;한정옥;조양수
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.11-17
    • /
    • 1996
  • Many researches on natural gas engines, with lean mixtures are being conducted for the purpose of preservation of global environment. Lean combustion is one of the most promising method for increasing engine efficiency and reducing the emission from SI engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate, by use of swirl or tumble flow, are needed to guarantee a successful subsequent combustion. Experimental data were obtained on a 4-stroke, natural gas fueled SI engine to investigate the effect of compression ratio, swirl and spark plug electrode rotation on efficiency and emission under lean burn condition. Experimental results have displayed that higher compression ratio, presence of swirl vane and favorable direction of electrode gap brougth about the improvements in engine efficiency and its operational stability.

  • PDF

희박연소기관용 용량방전식 다회수스파크 점화장치의 개발에 관한 기초 연구 (A basic study on development of multiple- spark capacitor discharge igniter for lean burn engine)

  • 이상준;나성오;이종태
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3676-3685
    • /
    • 1996
  • Enhancement of the ignitability was necessary to realize the lean burn engine. The characteristics of multiple-spark capacitor discharge igniter(MSCDI) usefulness of which for lean burn was examined in constant volume combustion chamber and evaluated in spark ignition engine. Noise of MSCDI for engine was restricted by adoption of low voltage control system. It was found that the adaptability for high engine speed was remarkable. Lean limit in engine with MSCDI was extended 10% than conventional coil ignition system. Also maximum brake thermal efficiency was almost enhanced 1%.

A Study on Spark Ignition Natural Gas Engines

  • Cho Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.455-462
    • /
    • 2006
  • Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric burn conditions with different combustion and emission characteristics. In this paper, the fuel economy, emissions, misfire, knock and cycle-to-cycle variations in indicated mean effective pressure of lean burn natural gas engines are highlighted. Stoichiometric burn natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to that of gasoline engines, high boosting pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precisely control strategies should be developed to meet stringent emission standards.

혼합기의 유동과 점화특성이 기관성능에 미치는 영향 (Effects of Mixture Flow and Ignition Characteristics on the Engine Performance)

  • 이중순;김진영;정성식;하종률;배충식
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.37-44
    • /
    • 1998
  • Lean burn combustion is an important concept for improving the fuel consumption and exhaust emissions. However, the lean burning is associated with increased cycle-to-cycle combustion variations due to the ignition instabilities and redu- ced flame propagation rates. Engine stability under lean mixture conditions could be improved by increasing flame speed through enhanced flow characteristics and by securing ignitability with improvement of ignition systems. The effects of flow motion and ignition characteristics on the combustion performances were investigated in a 4-valve SI engine. Flow motions of tumble-swirl were varied with a swirl control valve attached at the inlet ports, while ignition energy and its distribution were controlled in a high -frequency ignition system by changing spark duration and spark frequency. The improvement of lean burn performance by the optimum flow motion and ignition characteristics is discussed.

  • PDF

희박연소 안정화를 위한 가스유동장 조건에 관한 연구 (Optimal Gas-Flow Conditions for Stabilization of Lean-Burn Combustion)

  • 이기형;이창식
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.763-770
    • /
    • 1995
  • Gas flow characteristics within the cylinder is important factors in impoving lean combustion stability. This paper shows the effects of various flow fields generated by a swirl control valve(SCV) on combustion process in a 4-valve spark ignition engine. An impulse swirl/tumble meter was used to elucidation the steady-state flow characteristics, and a rotating grating type LDV was developed to measure the mean velocity and tunbulence intensity in relation to the crank angle. These methodologies were applied to clarify the correlation between gas flow characteristics and combustion stability at a lean air fuel ratio. An analysis of the correlation revealed the gas flow conditions required to optimize a lean-burn system.

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권7호
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

희박 엔진 연소실내의 유동해석(I) (In-Cylinder Flow Analysis of a Lean-Burn Engine(I))

  • 양희천;이준식;유정열;최해천
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.188-198
    • /
    • 1995
  • Turbulent flow characteristics of a lean-burn engine were qualitatively studied in order to obtain the optimum design parameters. 3-D lean-burn model engine was made up of an intake port, an intake valve and a cylinder. Computational grids were generated using PATRAN which was a FEM grid-generation software and numerical calculations were performed using STAR-CD. The predicted results showed that swirl and tumble structures were significantly changed by the valve lifts.

  • PDF

균일 혼합기를 이용한 이론 공연비 직접분사 가솔린 엔진 개발에 관한 실험적 연구 (A Study on the Development of Stoichiometric Direct Injection Gasoline Engine by Homogeneous Charge)

  • 이내현;유철호;최규훈
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.32-42
    • /
    • 1998
  • Lean burn gasoline engine is recognized as a promising way to meet better fuel economy. Lean burn engine is classified into port injection and direct injection(DI), DI is more active technique for improving fuel economy with ultra-lean operation, Nowadays, port injected lean burn engine has been produced by many Japan maker. Also, DI engine is also possible for production owing to improvement in control technique of spray, flow air fuel ratio. DI engine uses either homogeneous stoichiometric mixture or stratified mixture by controlling injection timing to be early or late respectively. HM(homogeneous mixture) is worse than SM(stratified mixture) in view of ultra-lean operation in partical load and Nox reducion by using EGR control. But, HM has advanteges in cold starting and emission reduction during transient operation, This paper describes experimental variables and bench test results of HM GDI engine.

  • PDF

린-번 엔진 개발 (The Development of Lean-Burn Eng.)

  • 이태표;임국현;김종부;김민형;안두수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.1005-1008
    • /
    • 1999
  • HMC has developed the lean burn system with alpha 4-valve into domestic market in the end of 1997. In a viewpoint of saving energy and prevention of global warming (CO2 reduction), the lean burn system has recently attracted a considerable attentions in gasoline engines. There has been, however, difficulty in extending LML(Lean Misfire Limit) enough to meet the emission regulations and satisfaction of driveability. In this paper some descriptions will be given upon the new technology of lean bum engine which will be installed in Accent, especially the improvement of the combustion, the development of engine management system such as intake system and wide range air fuel control strategy, and the result of vehicle test.

  • PDF