• 제목/요약/키워드: Lean Premixed

검색결과 208건 처리시간 0.023초

H2-공기와 CO-공기의 예혼합화염의 화염소화에 있어서 화학적 상호작용의 효과 (Effect of Chemical Interaction on Flame Extinction in Interacting H2-air and CO-air Premixed Flames)

  • 정승욱;박정;권오붕;길상인;윤진한
    • 한국연소학회지
    • /
    • 제18권4호
    • /
    • pp.44-52
    • /
    • 2013
  • Important role of chemical interaction in flame extinction was numerically investigated in downstream interaction among lean(rich) and lean(rich) premixed as well as partially premixed $H_2$-air and CO-air flames. The strain rate varied from 30 to $5917s^{-1}$ until interacting flame could not be sustained anymore. Flame stability diagrams mapping lower and upper limit fuel concentrations for flame extinction as a function of strain rate are presented. Highly stretched interacting flames were survived only within two islands in the flame stability map where partially premixed mixture consisted of rich $H_2$-air flame, extremely lean CO-air flame, and a diffusion flame. Further increase in strain rate finally converges to two points. Appreciable amount of hydrogen in the side of lean $H_2$-air flame also oxidized the CO penetrated from CO-air flame, and this reduced flame speed of the $H_2$-air flame, leading to flame extinction. At extremely high strain rates, interacting flames were survived only by a partially premixed flame such that it consisted of a very rich $H_2$-air flame, an extremely lean CO-air flame, and a diffusion flame. In such a situation, both the weaker $H_2$-air and CO-air flames were parasite on the stronger diffusion flame such that it could lead to flame extinction in the situation of weakening the stronger diffusion flame. Particular concerns are focused on important role of chemical interaction in flame extinction was also discussed in detail.

EGR 및 예혼합 정도가 메탄/공기 화염의 NO 생성에 미치는 영향 (Effects of EGR and Premixedness on NO Formation of Methane/Air Flames)

  • 이원남;이웅재
    • 한국연소학회지
    • /
    • 제4권2호
    • /
    • pp.63-74
    • /
    • 1999
  • The effects of EGR and premixedness on NO formation have been numerically investigated. The flame structure is classified into three categories; premixed flame($=1)$, rich/lean premixed flame(${\alpha}=0.6$ and 0.8) and diffusion flame(${\alpha}=0$). NO formation/destruction mechanisms are assorted to thermal, reburn and Fenimore mechanisms. The temperature of unburned gas is arranged to 298 and 500 K to have access to the condition in a real internal combustion engine. The results show that all three NO formation/destruction reaction rates in the fuel rich flame zone could be decreased by EGR for rich/lean premixed flames, while those in the fuel lean flame zone are not significantly changed. Near the stagnation plane, however, only the thermal NO reaction rate is decreased. The contribution of reburn and Fenimore mechanisms for the net NO production becomes less significant as the premixedness of a flame increases. The larger amount of NO reduction with EGR is expected under the higher temperature and/or higher fuel/air premixedness conditions due to the increased contribution of the thermal mechanism. The role of Fenimore and reburn mechanisms could be important for rich premixed and diffusion flames; therefore, the effect of EGR on NO reduction could vary with fuel/air premixedness. The premixedness of a partially premixed flame changes the flame structure and could affect the NO production characteristics.

  • PDF

과농-희박 예혼합화염의 상호작용에 관한 연구 (On the interaction of rich-lean premixed flames)

  • 이충훈;정석호
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.991-1000
    • /
    • 1987
  • 본 연구에서는 과농-희박 연료장에서 화염들의 상호작용에 관하여 이론적 해 석 및 실험적 검증을 통해 연구하였고, 이 중 특히 두 개의 예혼합화염 사이에 확산화 염이 형성되어 세 개의 화염이 존재하는 영역을 고찰하였다.

Emissions in lean-lean two-stage combustion using premixed tubular flames

  • Takagi, Hideyuki;Hayashi, Shigeru;Yamada, Hideshi;Kawakami, Tadashige
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.466-471
    • /
    • 2004
  • In gas turbines, excess air for combustion is available and therefore lean premixed combustion is the most promising approach to the significant reduction of thermal NOx emissions. At lean conditions, however, flame stability is inherently worse and hence combustion tends to be incomplete. Efforts have been devoted toward extending the operating range of complete combustion at leaner conditions. One of them is the lean-lean two-stage combustion where lean to ultra-lean secondary mixtures are mixed with the hot burned gas from the primary stage. Conventional flame combustion or flameless reaction are initiated depending on the conditions of the secondary zone. In the first part of the present study, the effects of fuel injection on the emissions and flame stability were investigated for a single tubular flame, In the second part, the emissions and flame stability were studied for a two-stage combustor with secondary mixture injected through the tangential slots on a cylindrical combustor wall. The effects of the ratio of air flow rates to the primary and secondary zones on the emissions and combustion characteristics were investigate.

  • PDF

화염 구조에 미치는 연료 및 당량비에 관한 연구 (A Study on the Influence of Equivalence Ratio and Kinds of fuel in Flame Structure)

  • 박상규;최낙정;산하박사
    • 한국분무공학회지
    • /
    • 제3권4호
    • /
    • pp.43-49
    • /
    • 1998
  • In order to clarify the effect of equivalence ratio and kinds of fule in flame structure, a numerical simulation of triple flame developed in a co-flowing methane-air and air stream was carried out by the elementary chemical reaction mechanism. The following conclusions were obtained. Equivalence ratio at which the apparent burning velocity is maximum is a little larger than that of the one-dimensional premixed flame. Apparent burning velocities are two times higher than that of the one-dimensional premixed flame for the methane-air. The flame thrusts out forward in the downstream of the boundary between mixture and air stream, and a part of the flow is bent and forks out in this protruding flame so that a triple flame is originated; this triple flame is composed of fuel rich and lean premixed flame branches and a diffusion flame branch. Near the equivalence ratio at which the burning velocity of rule-dimensional premixed flame is the largest the effect of one-dimensional premixed flame becomes large and the fuel rich premixed flame advances and becomes vertical to the flow direction.

  • PDF

열-음향에 의한 난류희박 예혼합연소의 불안정성에 관한 실험적 연구 (An experimental study on the instability of lean premixed turbulent combustion induced by thermo-acoustics)

  • 홍정구;이민철;신현동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1166-1171
    • /
    • 2004
  • The combustion instability acts as a serious obstacle for the lean premixed combustion of gas turbine and even causes the fatal damage to the combustor and whole system. In this experiment, the pressure fluctuation is highly related to the stabilizing position of flame and fuel injection location. The fuel injection location is connected with the convection time of the fresh mixture, which is important time scale to refresh the mixtures near the flame stabilization location. The flame is extremely unstable when the alternative stabilization occurs and bulk mode frequency (${\sim}10Hz$) of pressure fluctuation is observed in this condition. It was found that the convection time scale of the fresh reactant coincided with the time scale of the bulk mode fluctuation. Hence this phenomenon results from the local equivalence ratio change caused by the pressure fluctuation induced by thermo-acoustic effects.

  • PDF

희박 예혼합 모델 가스터빈 연소기에서 스월유동 특성이 화염 간 상호작용에 미치는 영향 (Swirl Flow Effects on Flame-Flame Interactions in a Model Lean-Premixed Gas Turbine Combustor)

  • 이지호;박준형;한동식;김규태
    • 한국연소학회지
    • /
    • 제23권1호
    • /
    • pp.21-27
    • /
    • 2018
  • The effect of swirl flow structures on combustion dynamics of two interacting, lean-premixed flames was experimentally investigated, with a particular emphasis on swirl numbers and swirl rotational directions. Our results show that the amplitude of limit cycle oscillations is very sensitive to the combination of swirl numbers and rotational directions, while the instability frequency remains nearly unchanged. The counter-rotating cases show significantly lower pressure perturbations, and this behavior appears to be related to the formation of compact interacting zone with higher heat release rate, indicating the presence of increased flame surface wrinkling caused by intense turbulence.

희박예혼합 마이크로 가스터빈 연소기 형상에 따른 연소특성 및 NOx 배기특성에 관한연구 (Effect of the Combustor Geometries on Combustion and NOx Emission Characteristics in a Lean Premixed Micro Gas Turbine)

  • 최민성;원온누리;김민국;나종문;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.229-231
    • /
    • 2012
  • A numerical analysis of a lean premixed combustor in a micro gas turbine was carried out to investigate the correlation between the turbulent mixing and emission characteristics on the combustor geometries. The interaction between the burners, by flow direction and momentum, significantly influenced on the turbulent mixing and combustion characteristics. The vortex which was generated by thermal expansion was observed during the combustion process, this was distinguished from the combustor geometries. The results showed that these characteristics can affect the NOx emission.

  • PDF

희박 예혼합 연소기에서 연료 조성이 화염전달함수 특성에 미치는 영향 (Effects of Fuel Composition on Flame Transfer Function in Lean Premixed Combustor)

  • 김진아;김지환;이정원;김대식
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.135-140
    • /
    • 2015
  • Flame transfer function is used to determine the relationship between flow fluctuations and heat release perturbations in a lean premixed gas turbine combustor. The characteristics of flame transfer function are known to depend greatly on flame geometries in addition to other various flow conditions. However, it is not easy to experimentally measure the flame transfer function under various actual combustor operating conditions in terms of time and cost. The current research tries to model the flame transfer function using CFD(Computational Fluid Dynamics). From the results, it is shown that the calculated steady flame geometry can be exactly captured with consideration of the wall heat transfer and radiations. Also, unsteady analysis results show the close characteristics of the flame transfer function to the measured one in both gain and phase.

물添加가 豫混合火焰의 燃燒效率에 미치는 影響 (The effect of water addition on combustion efficiency in premixed flame)

  • 김성환;오신규;채재우
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.819-827
    • /
    • 1987
  • 본 연구에서는 예혼합화염에 물을 촘가하였을 때의 물/연료 체적비에 따른 화 염온도, 불완전가스농도(CO, THC, H$_{2}$), soot 농도를 측정하여 물이 연소효율에 미치는 영향을 고찰하고자 한다.