• Title/Summary/Keyword: Lean Direct Injection

Search Result 64, Processing Time 0.029 seconds

The Effect of Multi-ignition Strategy on the Combustion and Emission Characteristics in a Ultra Lean Burn GDI Engine (초희박 GDI엔진에서 다단점화에 의한 연소 및 배기 특성)

  • Park, Cheol-Woong;Kim, Sung-Dae;Kim, Hong-Suk;Oh, Hee-Chang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.106-112
    • /
    • 2012
  • Since air pollution problem by emissions from automotive vehicles has become social issues, lean-burn gasoline direct injection (GDI) engine is focused as an alternative to meet the requirement of reinforced emission regulation and improved fuel consumption. Spray-guided type DI combustion is promising technology, which characterized by the centrally mounted injector and closely positioned spark plug, since stable lean combustion can be realized even at ultra-lean mixture condition. In the present study, the effect of multi-ignition with developed charge coil on combustion and emission characteristics was investigated in optical accessible single cylinder engine. In order to fully understand the in-cylinder phenomena and the mechanisms of emission production, optical diagnostics, such as flame visualization was also carried out at frequently using operating condition. Multi-ignition is effective to improve fuel economy but increase NOx emission at flammability limit.

Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine (3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.

Effect of Injection Pressure and Injection Timing on Spray and Flame Characteristics of Spray-Guided Direct-Injection Spark-Ignition Engine under Lean Stratified Combustion Operation (성층희박연소 운전조건에서 분사시기에 따른 분무유도식 직접분사 가솔린엔진의 분무 및 화염특성)

  • Oh, Heechang;Lee, Minsuk;Park, Jungseo;Bae, hoongsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.221-228
    • /
    • 2013
  • An experimental study was carried out to investigate the effects of the injection timing on the spray and combustion characteristics in a spray-guided direct-injection spark-ignition (DISI) engine under lean stratified operation. An in-cylinder pressure analysis, exhaust emissions measurement, and visualization of the spray and combustion were employed in this study. The combustion in a stratified DISI engine was found to have both lean premixed and diffusion controlled flame combustion characteristics. The injection timing condition corresponding to the stratified mixture characteristics was verified to be a dominant factor for these flame characteristics. For the early injection timing, a non-luminous blue flame and low combustion efficiency were observed as a result of the lean homogeneous mixture formation. On the other hand, a luminous sooting flame was shown at the late injection timing because of an under-mixed mixture formation. In addition, the smoke emission and incomplete combustion products were increased at the late injection timing as a result of the increased locally rich area. On the other hand, the NOx emissions decreased and IMEP increased as the injection timing retarded. The combustion phasing produced by the injection timing was verified as the reason for this observation.

A Study on the Characteristics of Combustion according to Injection Strategy in DISI Engine (직접분사식 가솔린엔진의 분사 비율에 따른 연소특성에 관한 연구)

  • In, Byung-Deok;Park, Sang-Ki;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2012
  • Recently, the important issues of gasoline engine are to reduce the fuel consumption and emission. Thus, many researchers are studying the technology to solve these problems. One approach of these issues is to achieve homogeneous charge combustion and stratified change combustion with various injection strategy. In this study, the combustion characteristics of DISI engine accrding to injection strategy were examined. The effect of injection timing on lean limit A/F were investigated using dual DISI single cylinder. The results show that the engine operation region of dual DISI type engine is larger than that of PFI and DISI type engine cases. Especially, late injection is very effective to extend the operation region more than any other injection timings. In addition, the results show that when the DISI injection ratio is increase, leam limit A/F is improved. It means that the dual injection system car meet with emission regulations and reduce the fuel consumption. Also, combustion pressure of dual injection system is much higher than PFI and DISI injection.

FUTURE GASOLINE AND DIESEL ENGINES - REVIEW

  • Monaghan, M.L.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • This paper reviews the main drivers forcing change and progress in powertrains for passenger cars in the coming years. The environmental drivers of omissions and CO2 will force better technical performance, but customer demand for increased choice will force change in the basic engine design and provide opportunities for alternate configurations of powertrain. Gasoline engines will embody refinements of valve train actuations as well as developments in combustion, especially direct injection and possibly a lean booated form of direct injection. Nevertheless, the conventional, port injected engine will continue to be the dominant engine for some years to come. The high speed direct injection diesel will very soon supplant its indirect injection predecessor completely. It will take an increasing share of the total powertrain market as improved specific power and refinement make it even more attractive to the customer. Car manufacturers will provide diesel models to satisfy this customer demand as well as using the efficiency of the diesel to enable them to meet their fleet CO2 commitments. Both gasoline and diesel engines will see an increasing degree of electrification and partial hybridisation as efficient flywheel mounted electrical devices become available.

  • PDF

A Study on Combustion Characteristics of Gasoline and Diesel Fuels in a Compression Ignition Engine (압축착화 엔진에서 가솔린과 디젤연료의 연소 특성에 관한 연구)

  • Kim, Kihyun
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • The combustion characteristics of gasoline and diesel were tested in a compression ignition engine. Both fuels were used with same common rail injection system. Combustion experiment showed that low load condition of 0.45 MPa IMEP (indicated mean effective pressure) was tested in metal and optical engines. The gasoline combustion showed higher hydrocarbon and carbon monoxide emissions but lower soot emission compared with diesel combustion. NOx emissions were very high at late injection timing but significantly decreased at early injection timing due to the lean combustion resulted from vigorous mixing process. Direct combustion visualization showed that the diesel combustion was dominated by diffusion combustion exhibiting soot incandescence and the gasoline combustion was mostly consisted of premixed combustion showing blue chemiluminescence.

A Study on the Combustion and Performance Characteristics in Compression Ignition CRDI Diesel Engine (직접분사식 압축착화 디젤엔진의 분사시기 변화에 따른 연소 및 성능특성에 관한 연구)

  • Kim, Gi-Bok;Kim, Chi-Won;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • Since the oil shock of 1970's there was a strong upward tendency for the use of the high viscosity and poorer quality fuels. Therefore the misfiring engine occurs due to the decrease of quantity injected for lean burn and emission control in Compression Ignition Common Rail Direct Injection diesel engine. In this study, it is designed and used the test bed which is installed with fuel injector controller. In addition to equipped engine using CRDI by controlling the injection timing with mapping modulator, it has tested and analyzed the engine performance and combustion characteristics, as it is varied that they are the operating parameters: fuel injected quantity, engine speed and injection timing.

The Study for Improving the Combustion in a Direct-Injection Type Diesel Engine (直接噴射式디이젤機關 의 燃燒性 向上 에 관한 考察)

  • 방중철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.257-262
    • /
    • 1983
  • The performance of a direct-injection type diesel engine often depends on the shape of combustion chamber, strength of swirl or squish, the number of nozzle holes, etc. This is of course because the process of combustion in the cylinder was affected by the mixture formation process. In this paper, the relation betweeen the flame progress and the performance of engine was clarified by changing variously the combustion process in cylinder with a special method, and thus the measures for improving the combustion were indirectly examined. Namely it was investigated what effect the flame progress in cylinder, which was varied with the locality of the lean premixture injected by the auxiliary injection method using an auxiliary injection nozzle in advance at the place where main spray was injected later, has on the engine output, the exhaust smoke density and the NO concentration in exhaust gas.

Emission Reduction Characteristics of Three-way Catalyst with Engine Operating Condition Change in an Ultra-lean Gasoline Direct Injection Engine (초희박 직접분사식 가솔린 엔진용 삼원촉매의 운전조건에 따른 배기저감 특성)

  • Park, Cheol Woong;Lee, Sun Youp;Yi, Ui Hyung;Lee, Jang Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.727-734
    • /
    • 2015
  • Recently, because of the increased oil prices globally, there have been studies investigating the improvement of fuel-conversion efficiency in internal combustion engines. The improvements realized in thermal efficiency using lean combustion are essential because they enable us to realize higher thermal efficiency in gasoline engines because lean combustion leads to an increase in the heat-capacity ratio and a reduction of the combustion temperature. Gasoline direct injection (GDI) engines enable lean combustion by injecting fuel directly into the cylinder and controlling the combustion parameters precisely. However, the extension of the flammability limit and the stabilization of lean combustion are required for the commercialization of GDI engines. The reduction characteristics of three-way catalysts (TWC) for lean combustion engines are somewhat limited owing to the high excess air ratio and low exhaust gas temperature. Therefore, in the present study, we assess the reaction of exhaust gases and their production in terms of the development of efficient TWCs for lean-burn GDI engines at 2000 rpm / BMEP 2 bar operating conditions, which are frequently used when evaluating the fuel consumption in passenger vehicles. At the lean-combustion operating point, $NO_2$ was produced during combustion and the ratio of $NO_2$ increased, while that of $N_2O$ decreased as the excess air ratio increased.

A Experimental Study on the Effects of the Impingement-wall on the Spray and Combustion Characteristics of Direct-Injection LPG (충돌벽면이 직분식 LPG의 분무 및 연소 특성에 미치는 영향에 관한 실험 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.49-56
    • /
    • 2015
  • As an alternative fuel that can be used in SI engine, LPG is one of clean fuels with larger H/C ratio compared to gasoline, low $CO_2$ emission, and small amount of pollutants such as sulfur compounds. When LPG is used in spark ignition engine, volumetric efficiency of the engine can be improved and pumping loss can be reduced by performing direct injection into the combustion chamber instead of port fuel injection. LPG-DI engine allows for lean combustion and stratified combustion under low load. In case of stratified combustion, air fuel ratio can be greatly increased compared to theoretic mixture ratio combustion. Improved thermal efficiency of the engine and reduced pumping loss can be expected from stratified combustion. Accordingly in this study, an experimental apparatus for visualization was designed and manufactured to study the combustion process of LPG after injection and ignition, intended to examine ignition probability and combustion characteristics of spark ignition direct injection(SIDI) LPG fuel. Ambient pressure, ambient temperature and fuel injection pressure were found as important variables that affect ignition probability and flame propagation characteristics of LPG-air mixture. Also, it was verified that the injected LPG fuel can be directly ignited by spark plug under appropriate ambient conditions.