• Title/Summary/Keyword: Leaky integrator

Search Result 2, Processing Time 0.016 seconds

Development of Improved String Model for Instruments with Anjok (안족이 있는 악기의 개선된 현의 모델 개발)

  • Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.328-333
    • /
    • 2007
  • In this paper, we describe characteristics of a movable bridge called the Anjok and propose an improved string model which has delay line controller in physical modeling of the Gayageum. Movable bridge, the Anjok determines the length of vibrating string and transmits the vibration of each string to the body of the Gayageum. We analyze the variations in frequency domain and implement the Anjok model as parametric form using the first-order polynomial fitting in logarithmic scale graph, because the length of string changes fundamental frequency. In order to implement the Anjok model, frequency fitting, tension fitting and frequency fitting using leaky integrator are used. The frequency fitting using leaky integrator has the best results among those. Proposed string model with the Anjok model can represent real tuning system of the real Gayageum and the proposed model could synthesize sounds which is similar to original sounds.

An Improved Frequency Modeling Corresponding to the Location of the Anjok of the Gayageum (가야금 안족의 위치에 따른 개선된 주파수 모델링)

  • Kwon, Sundeok;Cho, Sangjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.146-151
    • /
    • 2014
  • This paper analyzes the previous Anjok model of the Gayageum and describes a method to improve the frequency modeling based on previous model. In the previous work, relation between the fundamental frequency and Anjok's location on the body is assumed as an exponential function and these frequencies are integrated by a first-order leaky integrator. Finally, a parameter of the formula to calculate the fundamental frequency is obtained by applying integrated frequencies to the linear regression. This model shows 2.5 Hz absolute deviation on average and has maximum error 7.75 Hz for the low fundamental frequencies. In order to overcome this problem, this paper proposes that the Anjok's locations are grouped according to the rate of error increase and linear regression is applied to each group. To find the optimal parameter, the RMSE(Root Mean Square Error) between measured and calculated fundamental frequencies is used. The proposed model shows substantial reduction in errors, especially maximum three times.