• Title/Summary/Keyword: Leakage-energy recycling

Search Result 3, Processing Time 0.015 seconds

Novel Dual DC-DC Flyback Converter with Leakage-Energy Recycling

  • Yang, Lung-Sheng
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1007-1014
    • /
    • 2018
  • A novel dual DC-DC flyback converter with leakage-energy recycling is presented in this paper. Only an active switch is used for this converter. A pulse-width-modulation strategy is adopeted to control this switch. Two transformers are employed for the proposed converter. During the switch ON-period, the primary windings of the two transformers store energies. At the switch OFF-period, the energies stored in the primary windings of the two transformers are released to the output via the secondary windings of the two transformers. Meanwhile, the leakage energies of the two transformers can be recycled. The operating principles and steady-state analyses of the proposed converter are described in detail. A prototype circuit of the proposed converter is implemented for verifying the performances.

Low-Power Voltage Converter Using Energy Recycling Capacitor Array

  • Shah, Syed Asmat Ali;Ragheb, A.N.;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.62-71
    • /
    • 2017
  • This paper presents a low-power voltage converter based on a reconfigurable capacitor array. Its energy recycling capacitor array stores the energy during a charge stage and supplies the voltage during an energy recycle stage even after the power source is disconnected. The converter reconfigures the capacitor array step-wise to boost the lost voltage level during the energy recycle stage. Its energy saving is particularly effective when most of the energy remaining in the charge capacitors is wasted by the leakage current during a longer sleep period. Simulations have been conducted using a voltage source of 500 mV to supply a $V_{DD}$ of around 800 mV to a load circuit consisting of four 32-bit adders in a 65-nm CMOS process. Results demonstrate energy recycling efficiency of 85.86% and overall energy saving of 40.14% compared to a conventional converter, when the load circuit is shortly active followed by a long sleep period.

Development on the Methodology of CDM Projects in the SF6 Recovery and Recycling of Electrical Equipment (전력설비에서의 SF6 회수 및 재활용 CDM 방법론 개발)

  • Pyo, Jeong-Gwan;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.143-159
    • /
    • 2011
  • Projects applying the CDM methodology AM0035 of the $SF_6$ Emission Reductions in Electrical Grids should provide direct monitoring of all the key parameters that are related to estimation of baseline and project emissions including detailed explanations of key operating conditions and procedures, and an explanation addressing uncertainty as the result of EB meeting 41. Through this study, recovery ratio during maintenance, purity of $SF_6$ before and after disposal, replacing, loss rate of $SF_6$ before and after reclamation, leakage emission from electricity consumption and fossil fuel combustion, considered conservatively the key parameter of various monitoring. Consequently, confirmed the reduction in the amount of reduction due to the baseline emission decrease, project emission increase.