• Title/Summary/Keyword: Leakage Reduction

Search Result 485, Processing Time 0.027 seconds

Schottky barrier poly-Si thin film transistor by using erbium-silicided source and drain (어븀-실리사이드를 이용한 쇼트키 장벽 다결정 실리콘 박막 트랜지스터)

  • Shin, Jin-Wook;Koo, Hyun-Mo;Jung, Myung-Ho;Choi, Chel-Jong;Jung, Won-Jin;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.75-76
    • /
    • 2007
  • Poly-Si Schottky barrier Thin Film Transistor (SB-TFT) is manufactured with erbium silicided source/drain. High quality poly-Si film was obtained by crystallizing the amorphous Si film with Excimer laser annealing (ELA) method. The fabricated poly-Si SB-TFT devices showed low leakage current and large on/off current ratio. Moreover, the electrical characteristics were considerably improved by 3% $H_2/N_2$ gas annealing, which is attributed to the reduction of trap states at the grain boundaries and interface trap states at gate oxide/poly-si channel.

  • PDF

Hardness Profiles of Porcelain Insulators by Climate Changes (기후 변화에 따른 자기 애자의 시멘트 경도 변화)

  • Lee, Joohyun;Kim, Hong-Sik;Kim, Joondong;Choi, In-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.24-28
    • /
    • 2018
  • Insulators used in overhead transmission lines are continuously exposed to a number of mechanical and electrical stresses owing to external environmental factors, resulting in corrosion, reduction in durability, and deterioration. Widely used porcelain insulators are fabricated with cement and porcelain and are especially common in Korea. Changes in the hardness and chemical reactivity of the cement increase the leakage and fault currents and increase the possibility of flashover due to insulation breakdown. Therefore, it is important to evaluate the durability and defects of porcelain insulators. Studies on the reliability of various evaluation methods are needed to prevent accidents by accurately determining the replacement timing and potential defects in porcelain insulators. In this study, the hardness of the cement part of the porcelain insulator was measured using the Vickers hardness test and its composition was analyzed by energy dispersive spectroscopy and X-ray diffraction analysis. The performance of the insulators was compared in two different regions with varying climatic conditions. This study presents an evaluation method of the defects in porcelain insulators by measuring humidity, which can also be used to assess the reliability of the insulators.

Dependency of the Device Characteristics on Plasma Nitrided Oxide for Nano-scale PMOSFET (Nano-scale PMOSFET에서 Plasma Nitrided Oixde에 대한 소자 특성의 의존성)

  • Han, In-Shik;Ji, Hee-Hwan;Goo, Tae-Gyu;You, Ook-Sang;Choi, Won-Ho;Park, Sung-Hyung;Lee, Heui-Seung;Kang, Young-Seok;Kim, Dae-Byung;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.569-574
    • /
    • 2007
  • In this paper, the reliability (NBTI degradation: ${\Delta}V_{th}$) and device characteristic of nano-scale PMOSFET with plasma nitrided oxide (PNO) is characterized in depth by comparing those with thermally nitrided oxide (TNO). PNO case shows the reduction of gate leakage current and interface state density compared to TNO with no change of the $I_{D.sat}\;vs.\;I_{OFF}$ characteristics. Gate oxide capacitance (Cox) of PNO is larger than TNO and it increases as the N concentration increases in PNO. PNO also shows the improvement of NBTI characteristics because the nitrogen peak layer is located near the $Poly/SiO_2$ interface. However, if the nitrogen concentration in PNO oxide increases, threshold voltage degradation $({\Delta}V_{th})$ becomes more degraded by NBT stress due to the enhanced generation of the fixed oxide charges.

Internal Corrosion Control of Drinking Water Pipes by pH and Alkalinity Control and Corrosion Inhibitor (수질제어 및 부식억제제에 의한 상수도관의 내부부식 제어)

  • Kuh, Sungeun;Woo, Dalsik;Lee, Doojin;Kim, Juwhan;Ahn, Hyowon;Moon, Kwangsoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.215-223
    • /
    • 2006
  • The internal corrosion of water distribution systems is the main cause for the problem of the public health threat as well as water leakage in the damaged pipeline, red water, and odor and taste of the tap water. This study was examined the effect of chemicals used for pH and alkalinity control and corrosion inhibitors for producing the optimal corrosion control method. Corrosion study at different pH and alkalinity indicated that these control using alkaline chemicals was effective in corrosion rate, Fe release reduction, but examined to be increased in turbidity and corrosion-by-products(TTHMs) problems. The turbidity was slightly increased, requiring caution in controlling corrosion with $Ca(OH)_2$. At pH 9.0, TTHMs concentration is increased two times corn pared with non-control of pH. Using the pipe which had experienced 28 years of exposure, iron release was decreased with the corrosion inhibitor. Consequently, pH, Alkalinity control method using alkaline chemicals must be complemented by corrosion inhibitor application for efficient corrosion control.

Design and Implementation of the Cable Rod Hydraulic Actuator for Robotic Revolute Joints (로봇의 회전관절을 위한 케이블 로드를 갖는 유압 구동기 설계 및 구현)

  • Kim, Jungyeong;Park, Sangdeok;Cho, Jungsan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.723-730
    • /
    • 2016
  • This paper presents a cable-driven hydraulic actuator named Cable Rod Hydraulic Actuator (CRHA). The cable actuating system is attractive for designing a compact joint in robotic applications since it can be installed remotely from the joint. Recently, cable rods have been used in pneumatic area for inertia reduction. However, designing cable rods in hydraulics is challenging because it is difficult to achieve flexibility and endurance simultaneously under high pressure conditions. In this paper, the cable rod, which consists of a cable and jacket, is proposed to meet both requirements. To design the CRHA, we determined the design parameters, such as cylinder size, and selected the cable rod's material by friction and leakage test. Finally, comparisons experiments about step and frequency responses with conventional hydraulic actuators were performed to assess feasibility for robotic joints, and the results show that the proposed system has good bandwidth and fast response as robotic joints.

Performance Evaluation of Electrochromic Window System by Different Orientations and Locations in Korea (Electrochromic 창호 적용시 지역별 건물 냉난방 에너지 소비량 절감성능)

  • Shin, Jae-Yoon;Chae, Young Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.75-84
    • /
    • 2018
  • The most crucial point of reducing building energy is application of high performance envelope. The amount of heat exchange through window is highest in comparison of other envelopes so that heat exchange through window influence directly with building energy consumption. The window energy performance can be define with thermal, leakage and optical performance. In previous study we can confirmed that not only thermal performance but also optical performance are considered, 11% to 15% of building energy consumption can be reduced. Smart window system has potential of energy saving so that many industry field use smart window system including architectural area and these aspect causes smart window market continuous growth year by year. In this study, building energy consumption has been analyzed which consist of smart window that dynamically control optical states. The consideration of standard commercial building model for research, the reference medium size commercial building model of DOE (Department Of Energy, USA) has been used. The building energy simulation result of 4 axis in 8 regions in Korea shows 8% to 22% reduction of building energy consumption by application of smart window system.

Thermodynamic and experimental analyses of the oxidation behavior of UO2 pellets in damaged fuel rods of pressurized water reactors

  • Jung, Tae-Sik;Na, Yeon-Soo;Joo, Min-Jae;Lim, Kwang-Young;Kim, Yoon-Ho;Lee, Seung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2880-2886
    • /
    • 2020
  • A small leak occurring on the surface of a fuel rod due to damage exposes UO2 to a steam atmosphere. During this time, fission gas trapped inside the fuel rod leaks out, and the gas leakage can be increased due to UO2 oxidation. Numerous studies have focused on the steam oxidation and its thermodynamic calculation in UO2. However, the thermodynamic calculation of the UO2 oxidation in a pressurized water reactor (PWR) environment has not been studied extensively. Moreover, the kinetics of the oxidation of UO2 pellet also has not been investigated. Therefore, in this study, the thermodynamics of UO2 oxidation under steam injection due to a damaged fuel rod in a PWR environment is studied. In addition, the diminishing radius of the UO2 pellet with time in the PWR environment was calculated through an experiment simulating the initial time of steam injection at the puncture.

Incarcerated Hiatal Hernia with Perforation after Laparoscopic Total Gastrectomy with Roux-en-Y Reconstruction: a Case Report

  • Wang, Nai-Yu;Tsai, Chung-Yu;Liu, Yuan-Yuarn;Chen, I-Shu;Ho, Kai-Hung
    • Journal of Gastric Cancer
    • /
    • v.19 no.1
    • /
    • pp.132-137
    • /
    • 2019
  • The occurrence of hiatal hernia after total gastrectomy with Roux-en-Y reconstruction is rare. We report the case of a 76-year-old man who presented with dyspnea, vomiting, and fever around 8 days after total gastrectomy with Roux-en-Y reconstruction. Abdominal computed tomography revealed a hiatal hernia containing part of the small intestine in the left thoracic cavity. Emergent reduction and repair of the hiatal hernia were performed later. Operative findings revealed that the Roux limb was incarcerated in the left pleural cavity. Esophagojejunostomy leakage, perforation of the small intestine with transient ischemic change, and pyothorax were also found. Thus, feeding jejunostomy, thoracoscopic decortication, and diversion T-tube esophagostomy were performed. Considering that the main cause of hiatal hernia is blunt dissection with division of the phrenoesophageal membrane, approximating the crus with 1 or 2 figure-8 sutures, according to the size of the defect, to prevent the incidence of hiatal hernia after total gastrectomy may be performed.

Optimal Design of GaN-FET based High Efficiency and High Power Density Boundary Conduction Mode Active Clamp Flyback Converter (GaN-FET 기반의 고효율 및 고전력밀도 경계전류모드 능동 클램프 플라이백 컨버터 최적설계)

  • Lee, Chang-Min;Gu, Hyun-Su;Ji, Sang-Keun;Ryu, Dong-Kyun;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.259-267
    • /
    • 2019
  • An active clamp flyback (ACF) converter applies a clamp circuit and circulates the energy of leakage inductance to the input side, thereby achieving a zero-voltage switching (ZVS) operation and greatly reducing switching losses. The switching losses are further reduced by applying a gallium nitride field effect transistor (GaN-FET) with excellent switching characteristics, and ZVS operation can be accomplished under light load with boundary conduction mode (BCM) operation. Optimal design is performed on the basis of loss analysis by selecting magnetization inductance based on BCM operation and a clamp capacitor for loss reduction. Therefore, the size of the reactive element can be reduced through high-frequency operation, and a high-efficiency and high-power-density converter can be achieved. This study proposes an optimal design for a high-efficiency and high-power-density BCM ACF converter based on GaN-FETs and verifies it through experimental results of a 65 W-rated prototype.

A Study on the Design Methodology of CNTFET-based Digital Circuit (CNTFET 기반 디지털 회로 디자인 방법에 관한 연구)

  • Cho, Geunho
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.988-993
    • /
    • 2019
  • Over the past decades, the semiconductor industry has continuously scaled down the size of semiconductor devices to increase those performance and to integrate them at higher density on the chip. However, facing the reduction of gate control, higher leakage current, and short channel effect, there is a growing interest in next-generation semiconductors which can overcome these problems. In this paper, we discuss digital circuit design techniques using CNTFET(Carbon NanuTube Field Effect Transistor), which are attracting attention as candidates for the next generation of semiconductors. Since the structure of CNTFETs are clearly different from the structure of the structure of conventional MOSFETs, we will discuss how to utilize existing digital circuit methodology when designing digital circuits using the CNTFETs, and then simulate the performance differences between the two devices.