• Title/Summary/Keyword: Leakage Reduction

Search Result 483, Processing Time 0.027 seconds

Water loss Control in DMA Monitoring System Used Wireless Technology

  • Malithong, P.;Gulphanich, S.;Suesut, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.773-777
    • /
    • 2005
  • This article is about using information technology to apply with water loss inspection system in District Metering Area (DMA). Inspector can check Flow rate and Minimum Night Flow; NMF via Smart Phone or PDA include sending SMS Alert in case the Pressure, Flow rate and NMF is over the range of controlling. This will be used as equipment to implement water loss in international proactive and can keep on water loss reduction more efficiency. The system consists of Data Logger which collects data of Flow rate from DMA Master Meter. PC is Wap Server which dial via modem in order to get data through FTP Protocal that will convert text file to Microsoft Access Database. Wappage will use xhtml language to show database on Wapbrowser and can show the result on Smart Phone or PDA by graph and table for system analysis.

  • PDF

Design of MYNAMIC CMOS ARRAY LOGIC (DYNAMIC CMOS ARRAY LOGIC의 설계)

  • 한석붕;임인칠
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1606-1616
    • /
    • 1989
  • In this paper, the design of DYNAMIC CMOS ARRAY LOGIC which has both advantages of dynamic CMOS and array logic circuits is proposed. The major components of DYNAMIC CMOS ARRAY LOGIC are two-stage dunamic CMOS circuits and an internal clock generator. The function block of dynamic CMOS circuits is realized as a parallel interconnection of NMOS transistors. Therefore the operating speed of DYNAMIC CMOS ARRAY LOGIC is much faster than the one of the conventional dynamic CMOS PLAs and static CMOS PLA. Also, the charge redistribution problem by internl delay is solved. The internal clock generator generates four internal clocks that drive all the dynamic CMOS circuits. During evaluation, two clocks of them are delayed as compared with others. Therefore the race problem is completoly eliminated. The internal clock generator also prevents the reduction of circuit output voltage and noise margin due to leakage current and charge coupling without any penalty in circuit operating speed or chip area utilization.

  • PDF

Implementation of the Four-Terminal GaAs MESFET Model on SPICE (4단자 GaAs MESFET Model의 SPICE 탑재)

  • 조남홍;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.39-47
    • /
    • 1994
  • The drain current reduction effect due to the side-gating phenomena resulted from interaction between the neighbor gates is lead to degradation of circuit performance. In this paper, these effect were modelized for circuit simulation with the shift of threshold voltage resulting from negative charge formation and the analysis of substrate leakage current resulting trapping effect. To remove dificiencies of the conventional three terminal structure, these model were implemented in SPICE with the four terminal structure, and then the constructed environment enables the simulation of circuit performance degradation resulted from side-gating effect. The validity of implemented model is proved by comparisoin with experiment data.

  • PDF

Improvement of Cooling Water Quality by Corrosion and Scale Inhibitor (부식 및 스케일 억제제에 의한 냉각수 수질향상)

  • Jo, Kwan-Hyung;Woo, Dal-Sik;Hwang, Byung-Gi
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • This study was investigated to control the corrosion and scale at the cooling water system in steel works. Laboratory and field tests were performed for the indirect cooling water system of plate mill. Throughout the experiment, various factors such as leakage of pipes, heating rate and capacity, and the reaction between existing and substitute inhibitors were carefully monitored. The results showed that the harmful effect of high temperature could be minimized, and satisfactory corrosion/scale controls were effectively achieved using inhibitor, even at the increased temperature of $80^{\circ}C$. The batch and field tests in the gas scrubbing cooling water system of blast furnace and cooling water system of corex plant indicated that the new inhibitor was more effective for the prevention of corrosion and scale than the existing one.

The characteristics of Organic Thin Film Transistors with high-k dielectrics

  • Kim, Chang-Su;Kim, Woo-Jin;Jo, Sung-Jin;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1288-1290
    • /
    • 2005
  • We report on the structural and electrical properties of amorphous Yttria-stabilized zirconia (YSZ) thin films which are the potential high-k gate dielectric material of organic thin film transistor (OTFT). To investigate the influence of the oxygen flow rate on the structural and electrical properties of the YSZ films, XRD, XPS, J-E, I-V were carried out in this work. Oxygen vacancies are expected to be the most predominant type of defect in metal-oxide dielectrics. The leakage current density decreased mainly because of the reduction of oxygen vacancies with increasing oxygen flow rate.

  • PDF

A Locality-Aware Write Filter Cache for Energy Reduction of STTRAM-Based L1 Data Cache

  • Kong, Joonho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.80-90
    • /
    • 2016
  • Thanks to superior leakage energy efficiency compared to SRAM cells, STTRAM cells are considered as a promising alternative for a memory element in on-chip caches. However, the main disadvantage of STTRAM cells is high write energy and latency. In this paper, we propose a low-cost write filter (WF) cache which resides between the load/store queue and STTRAM-based L1 data cache. To maximize efficiency of the WF cache, the line allocation and access policies are optimized for reducing energy consumption of STTRAM-based L1 data cache. By efficiently filtering the write operations in the STTRAM-based L1 data cache, our proposed WF cache reduces energy consumption of the STTRAM-based L1 data cache by up to 43.0% compared to the case without the WF cache. In addition, thanks to the fast hit latency of the WF cache, it slightly improves performance by 0.2%.

Case History for Reduction of Shaft Vibration in a Steam Turbine

  • Kim, In Chul;Kim, Seung Bong;Jung, Jae Won;Kim, Seung Min
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.315-321
    • /
    • 2001
  • The shaft system of turbine is composed of rotating shaft, blades, bearings which support the shaft, packing seal which prevent the leakage of steam, and couplings which connect the shaft. Shaft system component failure, incorrect assemblage or deflection by unexpected forces causes vibration problem. And every turbine has its own characteristics in dynamic response. In this paper we propose the three-bearing supported type rotor which is real equipment and being operated this time as commercial operation. From 1996 it has a high vibration problem and there are many kinds of trial to solve this problem. In resent outage we performed a special diagnosis and carried out appropriate work. We would like to introduce and explain about this case history.

  • PDF

Topology Optimization for End Plate of Fuel Cell Stack (연료전지스택 바깥판의 위상최적설계)

  • Choi, Woo-Seok;Oh, Sung-Jin;Kim, Sung-Jong;Hong, Byung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.456-461
    • /
    • 2003
  • A fuel cell is an electrochemical device in which the energy of a chemical reaction is converted directly into electricity. By combining hydrogen fuel with oxygen from air, electricity is formed, without combustion of any form. Water and heat are the only by-products when hydrogen is used as the fuel source. Fuel cell stack consists of multi-layered unit cells. A unit cell consists of MEA and bipolar plates. The end plate of fuel cell stack should give a uniform distributed pressure to multi unit cell layers so as to reduce the contact resistance and to prevent the leakage of reactant gases and the damage of multi layer components. The current end plate is redundantly large and heavy. It makes the power per unit volume reduced. Topology optimization of end plate is conducted for mass reduction and enhancement of bending rigidity. The evaluation of the current design and the recommendation for the future design is remarked.

  • PDF

A Study on Mold Machining for Bearing Rubber Seal by Formed Tool. (총형공구를 이용한 고정밀 베어링 Rubber seal 금형가공에 관한 연구)

  • 김도형;김연술;이희관;노상흡;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1807-1810
    • /
    • 2003
  • The formed tool is used to machine the unique shape of rubber seal for geometrical shaping and reduction of cutting time. The bearing rubber seal produced by hot press forming has complex geometry for the complex geometrical shape to prevent leakage of lubricant oil and influx of the dust effectively. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining mold of the seal. In this paper, It is performed for selection of the formed tool to investigate cutting edge wear, cutting force, and surface quality. Also, an efficient high precision machining is proposed on the experiment data.

  • PDF

Reduction of Electromagnetic Force in AC Distributed Winding of Fault Current Limiter under Short-Circuit Condition

  • Ghabeli, Asef;Yazdani-Asrami, Mohammad;Doroudi, Aref;Gholamian, S. Asghar
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.400-404
    • /
    • 2015
  • Various kinds of winding arrangements can be used to enable fault current limiters (FCL) to tolerate higher forces without resulting in a substantial increase in construction and fabrication costs. In this paper, a distributed winding arrangement is investigated in terms of its effects on the short-circuit forces in a three-phase FCL. The force magnitudes of the AC supplied windings are calculated by employing a finite element-based model in the time stepping procedure. The leakage flux and radial and axial force magnitudes obtained from the simulation are compared to those obtained from a conventional winding arrangement. The comparison shows that the distributed winding arrangement significantly reduces the radial and, especially, the axial force magnitudes.