• Title/Summary/Keyword: Leak Monitoring System

Search Result 65, Processing Time 0.026 seconds

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Study on the Real-Time Leak Monitoring Technique for Power Plant Valves (발전용 밸브누설 실시간 감시기술 연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Development of Leak Detection System of Heat Exchanger using Acoustic Emission Technique (음향방출기법을 이용한 열교환기 누설검출시스템 개발)

  • Lee, Min-Rae;Lee, Jun-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.864-871
    • /
    • 2002
  • Acoustic emission(AE) technique has been applied to not only mechanical property testing but also on-line monitoring of the entire structure or a limit zone only. Although several AE devices have already been developed for on-line monitoring, the price of these systems is very high and it is difficult for the field to apply yet. In this study, we developed a specially designed PC-based leak detection system using A/D board. In this paper, AE technique has been applied to detect leak for heat exchanger by analyzing the characteristics of signal obtained from leak. It was confirmed that the characteristics of the signal generated by the turbulence of gas in the heat exchanger is narrow band signal having between 130-250kHz. Generally, the amplitude of leak signal is increased as the leak size increasing, but showed no significant change at frequency characteristic. Leak source location can be found by determining for the paint of highest signal amplitude by comparing with several fixed sensors. In this paper, AE results are compared with the PC-based leak detection system using A/D board.

Study on the Comparison of Piezoelectric Property of Acoustic Sensor for Valve Leak Diagnosis (밸브누설 진단용 PZT 및 Pb-Free 음향센서의 압전특성 비교 연구)

  • Lee, Sang-Guk;Park, Sung-Keun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3383-3388
    • /
    • 2007
  • To compare the sensor performance of AE leak diagnosis system which can measure valve leak conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured on valve of the simulated test system for power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, pressure difference, valve size and fluid using both piezoelectric acoustic emission sensor and Pb-Free acoustic emission sensor. The results of this study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve.

  • PDF

Confirmation of the Efectiveness of Remote Chemical Spills and Leak Monitoring System through Acetone Pool Evaporation Experiments (아세톤 풀 증발 실험을 통한 원격 유·누출 모니터링 시스템의 효용성 확인)

  • Eun Hee, Kim;Seul Gi, Lee;Byung Chol, Ma
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.25-31
    • /
    • 2022
  • In this study, the spill and leak system is developed to provide real-time remote monitoring of industrial complexes where chemical accidents have been occurring every year. The spill and leak monitoring system uses IR-RCD equipment mounted on a 70m-high steel tower to detect chemical substances, thereby detecting chemical accidents such as leaks, fires, and explosions in real time. If IR-RCD equipment can actually detect chemical substances at a long distance, accurate and rapid initial response can be expected. Therefore, in order to confirm that IR-RCD equipment can detect chemical leakage accidents occurring at a long distance, acetone was selected as the experimental substance and a detection experiment was designed. The experiment was conducted using the acetone pool evaporation method at the wharf which was located 1.5 km away from IR-RCD equipment, and it was confirmed whether IR-RCD equipment could detect acetone in real time through the control monitor.

AN ARTIFICIAL NEURAL NETWORK BASED SENSOR SYSTEMS FOR GAS LEAKAGE MONITORING

  • Ahn, Hyung-Il;Kim, Eung-Sik;Lee, June-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.282-288
    • /
    • 1997
  • The purpose of this paper is to predict the situation of leak in closed space using an Artificial Neural Network (ANN). The existing system can't monitor the whole He situations with on/off signals. Especially the first stage of data determines the leak spot and intensity is disregarded in gas accidents. To complement these faults, a new prototype of monitoring system is proposed. Ihe system is composed of'sensing systenL data acquisition system computer, and ANN implemented in software and is capable of identifying the leak spot and intensity in closed space. The concentration of gas is measured at the 4 different places. The network has 3 layers that are composed of 4 input Processing Element (PE),24 hidden PEs, md 4 output PEs. The ANN has optimum condition through several experiments and as a consequence the recognition rate of93.75% is achieved finally

  • PDF

Prevention of Soil Contamination from Underground Storage Facilities (유류저장시설로 인한 토양오염 예방대책)

  • 배우근;홍종철;정진욱;강우재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.169-173
    • /
    • 1998
  • The practice of the construction and management of the underground petroleum storage facilities in Korea was investigated extensively, and the problems were identified. The advanced technologies in the U.S.A was comparatively studied. Considering the effectiveness of leak prevention and technology applicability, the following measures were suggested. To prevent corrosion of the tank, a clad tank, an interior-lining tank, or a double-wall tank was appropriate and appeared to be most cost effective. For piping, non-metalic material was suggested. To prevent spill, a catchment basin can be effective. For monitoring of leak, construction of more than one of one or combination of an automatic leak-detection device, a vapor-detection system, a ground water-monitoring system, and a double-wall detection system was recommended.

  • PDF

Study on Evaluation of Internal Leak of Turbine Control Valve in Power Plant Using Acoustic Emission Signal Measurement (음향방출 계측에 의한 터빈 제어밸브 내부누설 평가연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.65-70
    • /
    • 2008
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the turbine major valves relating to safety for turbine operating and prevention of turbine trouble at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized electro-hydraulic control oil flowed through turbine electro-hydraulic controller oil check valve and turbine power/trip fluid solenoid valve in the condition of actual turbine operating. The acoustic emission method was applied to the valves at the site, and the background noise was measured far the abnormal plant condition. To judge for the leak existence ell the object valves, voltage analysis and frequency analysis of acoustic signal emitted from infernal leak in the valve operating condition are performed. It was conformed that acoustic emission method could monitor for valve internal leak to high sensitivity.

  • PDF

Leak Detection and Evaluation for Power Plant Boiler Tubes Using Acoustic Emission (음향방출을 이용한 보일러튜브 누설평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Boiler tubes in power plants are often leaked due to various material degradations including creep and thermal fatigue damage under severe operating conditions such as high temperature and high pressure over an extended period of time. To monitor and diagnose the tubes on site and in real time, the acoustic emission (AE) technology was applied. We developed an AE leak detection system, and used it to study the variation of AE signal from the on-site tubes in response to the changes in the boiler operation condition and to detect the locations of leakage based on it. Detection of leak was performed by acquiring and evaluating the signals in separate regimes of high and low frequency signal. As a result of these studies, we found that on-line monitoring and detection of leak location for boiler tubes is possible using the developed system. Thus, the system is expected to contribute to the safe operation of power plants, and prevent economic losses due to potential leak.

A Study on the Leakage Characteristic Evaluation of High Temperature and Pressure Pipeline at Nuclear Power Plants Using the Acoustic Emission Technique (음향방출기법을 이용한 원전 고온 고압 배관의 누설 특성 평가에 관한 연구)

  • Kim, Young-Hoon;Kim, Jin-Hyun;Song, Bong-Min;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.466-472
    • /
    • 2009
  • An acoustic leak monitoring system(ALMS) using acoustic emission(AE) technique was applied for leakage detection of nuclear power plant's pipeline which is operated in high temperature and pressure condition. Since this system only monitors the existence of leak using the root mean square(RMS) value of raw signal from AE sensor, the difficulty occurs when the characteristics of leak size and shape need to be evaluated. In this study, dual monitoring system using AE sensor and accelerometer was introduced in order to solve this problem. In addition, artificial neural network(ANN) with Levenberg.Marquardt(LM) training algorithm was also applied due to rapid training rate and gave the reliable classification performance. The input parameters of this ANN were extracted from varying signal received from experimental conditions such as the fluid pressure inside pipe, the shape and size of the leak area. Additional experiments were also carried out and with different objective which is to study the generation and characteristic of lamb and surface wave according to the pipe thickness.