• 제목/요약/키워드: Leaf spring suspension

검색결과 34건 처리시간 0.027초

수송 트레일러의 충격흡수장치 개발 (IV) - 동력경운기 적재함의 연결히치, 판스프링, 쇽업쇼바 - (Development of Vibration Absorption Device for the Transportation-Trailer System (IV) - Connecting Hitch, Leaf Spring and Shock Absorber Suspension -)

  • 홍종호;오영근
    • Journal of Biosystems Engineering
    • /
    • 제37권6호
    • /
    • pp.359-364
    • /
    • 2012
  • Purpose: This study was conducted to analyze the vibration absorption effect for the agricultural product transportation-trailer equipped with vibration absorbable connecting hitch, leaf spring suspension, and shock absorber simultaneously (HLS), comparing with the trailer equipped with vibration absorbable connecting hitch only(H), trailer equipped with connecting hitch and leaf spring suspension (HL), and existing trailer with no vibration absorption device (E). Methods: Vertical accelerations were measured at driver seat and front, middle, rear parts of trailer bottom with no load for 4 types of transportation-trailer, and analyzed using FFT analyzer. Results: The magnitude of average vibration accelerations occurred up to 20 Hz, at this low frequencies the severe damage for agricultural products could be represented, was lower (maximum 6 times) for HLS trailer compared with H trailer. And vibration absorption effect for HLS trailer was also higher up to 40-80 Hz and 80-100 Hz, but the difference was less. At driver seat, the vibration absorption effect was high severely for HL and HLS trailer, and the magnitude of vibration acceleration was showed less difference in comparing at trailer bottom. Conclusions: From the test results, it could be recommended that the agricultural products transportation trailer should be equipped with vibration absorption device of HLS.

자동차 현가장치용 FRP 판 Spring 제조기술 개발 (Development of the Manufacturing Technology of FRP Leaf Spring for Automotive Suspension)

  • 최선준;박진용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 자동차부품 제작기술의 진보
    • /
    • pp.143-151
    • /
    • 1996
  • In order to reduce the automotive weight, the study exchanging the steel for FRP in leaf spring has been studied. The purposes of this study are to develop more effective manufacturing process of FRP leaf springs than conventional one and to examine the prototype which is made by the developed process. As the results, we have developed more productive manufacturing process by 3-5 times than the conventional one and made FRP leaf spring with equivalent or higher quality than steel.

수송 트레일러의 충격흡수장치 개발(III) -평판 스프링 현가장치- (Development of Vibration Absorption Device for the Transportation-Trailer System (III) - Leaf Spring Suspension Device -)

  • 홍종호;박원엽
    • Journal of Biosystems Engineering
    • /
    • 제33권4호
    • /
    • pp.224-229
    • /
    • 2008
  • This study was aimed to minimize the impact force and vibration transmitted to the transporting materials from the trailer and wheel shaft by installing the leaf spring suspension device at the space between the wheel shaft and frame of power tiller trailer. The developed trailer equipped with leaf spring suspension device was compared to the existing trailer without suspension device, in order to identify the vibration absorption effect of the leaf spring. The results of this study could be summarized as follows; (1) The length and the maximum bending amount of the leaf spring were designed as 1,000 mm and 42 mm, respectively, considering the possible space for installing at below the trailer. When 4 leaf springs were installed on both wheel shafts, the allowable maximum load was identified as 9,418 N. (2) The average vibration accelerations for the frequency less than 20 Hz, where the severe transporting loss could be represented, were $0.017\;m/s^2$ and $0.133\;m/s^2$ for the developed and the existing trailer, respectively, showing the vibration absorption effect of about 87%. And the average vibration accelerations on the driver's seat for the frequency less than 20 Hz were $0.01\;m/s^2$ and $0.20\;m/s^2$ for the developed and the existing trailer, respectively, which showed the similar vibration absorption effect. (3) The change of the average vibration accelerations for the frequency from 20 Hz to 80 Hz showed the similar tendency with the result for the frequency less than 20 Hz, but the effect for developed trailer was reduced slightly. And the effect of vibration absorption for the above 80 Hz was reduced highly. However, by installing the leaf spring suspension device at the trailer, the low frequency below 40 Hz, which could affect on transporting loss severely, could be reduced highly. (4) The maximum vibration acceleration for the frequency less than 20 Hz were $0.027\;m/s^2$ and $1.267\;m/s^2$ for the developed and the existing trailer, respectively. And the change of maximum acceleration between 20 Hz and 120 Hz was showed similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

유한요소법을 이용한 현가장치용 겹판스프림의 시뮬레이션 (Simulation of Leaf Spring for Suspension using FEM)

  • 안오순;이경백;김영재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.620-623
    • /
    • 2000
  • The leaf spring is generally used effectively in load supporting because it has tension-diffused function in comparison with other springs. Nowadays the leaf spring is used widely in the suspensions of automobile and trains. The stiffness and the damping characteristics of the leaf spring being essential for the performance of vehicles, the exact evaluation is required. Various approximate formula are normally used for the leaf spring design. however, accuracy and trust are decreased because the contact and frictional characteristics between leaf plates are generally neglected. In this paper, nonlinear stiffness matrix of the leaf spring is solved by contact-element applying FEM for considering the contact and frictional characteristics between leaf plates. The results of proposed FE model are compared with test data.

  • PDF

Curved taper leaf spring의 동특성에 관한 연구 (A study on the dynamic characteristics of curved taper leaf spring)

  • 김찬묵;김광식
    • 오토저널
    • /
    • 제3권1호
    • /
    • pp.38-45
    • /
    • 1981
  • In this paper, the natural frequencies of curved taper leaf springs using on vehicle suspension systems are studied. By applying the Castigliano's definition, Rayleigh's principle and Dunkerley's equation, new formulas defining the natural frequency of such shaped spring are derived. Numerical calculations are in very good agreement with experimental results on actual models. We found that the natural frequencies of curved taper spring are increased by 21-28% compared with the spring having same weight, span and curve but uniform section.

  • PDF

현가장치용 겹판스프링의 설계프로그램 개발 (Design Program Development of the Leaf Spring for Suspension)

  • 최선준;최연창;최재찬;권혁
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.20-32
    • /
    • 1995
  • Springs for vehicle suspension control the vibration of a car and influence on the ridability, safety, and life of a car. In the paper, the computer aided design program has been developed, which design the leaf spring shape from the given specifications using basic theory and the expert's knowledge, and the design results are checked by the analysis theory in order to increase the accuracy, and feed back to the design input. For the purpose of easy use, this program consists of pull-down menu and interactive input mode. To prove the effectiveness of this program. two springs, of which one is symmetric, other asymmetric, are designed and analyzed, and the outputs are compared to the experiments. Considering the tolerance of the given specifications, the results are good.

  • PDF

소형버스의 동역학 해석을 위한 판스프링 모델링기법 개발 (Development of a Leaf Spring Moleling Method for Dynamic Analysis of a Mini-Bus)

  • 박태원;임홍재;이기호;박찬종;정일호
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.1-6
    • /
    • 1998
  • A leaf spring plays an important role in a passenger bus. Since characteristic of a leaf spring has a hysteresis behaviour, modeling technique for a leaf spring is an important issue for passenger bus analysis. In this paper, modeling technique for a leaf spring is presented. First, non-linear FEM model of a leaf spring is constructed then it is used to make an approximated model to be used in dynamic analysis. The modeling procedure is ex-plained in step by step approach. Then, this model is applied to dynamic analysis of a mini-bus with flexible body and non-linear dynamic force element. The results are compared with test data.

  • PDF

판스프링의 이력특성이 대형트럭의 조종성능에 미치는 영향에 관한 연구 (A Study on the Effects of Hysteretic Characteristics of Leaf Springs on Handling of a Large-Sized Truck)

  • 문일동;오재윤
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.157-164
    • /
    • 2001
  • This paper performs static and dynamic tests of a multi-leaf spring and a tapered leaf spring to investigate their hysteretic characteristics. In the static test, trapezoidal input load is applied with 0.1Hz excitation frequency and with zero initial loading conditions. In the dynamic test, sinusoidal input load is applied with five excitation amplitudes and three excitation frequencies. In these tests, static and dynamic hysteretic characteristics of the multi-leaf spring and the tapered leaf spring are compared, and, the effects of excitation amplitudes and frequencies on dynamic spring rate are also shown. In this paper, actual vehicle tests are performed to study the effects of hysteretic characteristics of the large-sized truck's handling performance. The multi-leaf spring or the tapered leaf spring is used in the front suspension. The actual vehicle test is performed in a double lane change track with three velocities. Lateral acceleration, yaw rate and roll angle are measured using a gyro-meter located at the mass center of the cab. The test results showed that a large-sized truck with a tapered leaf spring needs to have an additional apparatus such as roll stabilizer bar to increase the roll stabilizer due to hysteretic characteristics.

  • PDF

레벨링밸브를 가진 공기스프링 현가장치의 승차감 및 조종안정성 해석 (Ride and Handling Analysis of An Air Spring Suspension with Leveling Valve)

  • 탁태오;박종훈
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.105-113
    • /
    • 2000
  • Air springs are now widely used in bus or truck suspensions due to their advantages over conventional metal spring as coil or leaf springs. Air springs have soft spring rates, which give better ride quality, and additional leveling system provides constant ride height and maintains almost same vertical natural frequencies. A mathematical model of an air spring suspension system with height control system is constructed and dynamic responses of the suspension system are investigated in the light of leveling valve motion characteristic, vertical motion natural frequency. Also, using a full vehicle model, handling characteristics of an air spring suspension is studied and the results are compared with real test results, which shows good agreements.

  • PDF

Analysis of multi leaf spring based on contact mechanics - a novel approach

  • Kumaravelan, R.;Ramesh, S.;Gandhi, V.C. Sathish;Agu, M. Joemax;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.443-454
    • /
    • 2013
  • A leaf spring, especially the longitudinal type is liable and persistent element in automotive suspension system. In the present scenario the composite materials are widely used in the automobile industries has shown a great interest in the replacement of steel spring due to high strength by weight ratio. Previous investigations focused on stresses and displacement analysis of single leaf spring for different materials. The present work aims to design and analysis of leaf spring for two different cases by considering the Young's modulus to yield strength ratio. In the first case the analysis deals with the design and analysis of a single cantilever solid triangle beam which is an equivalent beam of a spring with three leaves having uniform strength. In the second case a 3-beams of rectangular cross section has been considered which is equivalent to a spring with three leaves. The analysis was carried out based on contact mechanics approach. The results were compared, that the fiberglass composite leaf spring is suitable for high loading capacity, reliability and efficiency.