• Title/Summary/Keyword: Leaf injury

Search Result 240, Processing Time 0.024 seconds

Indicative Responses of Rice Plant to Atmospheric Ozone

  • Hur, Jae-Seoun;Kim, Pan-Gi;Yun, Sung-Chul;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.3
    • /
    • pp.130-136
    • /
    • 2000
  • Differences in physiological and biochemical responses between sensitive and tolerant rice cultivars to ozone were investigated to develop reliable indications of early ozone damage. Three Korean local rice cultivars -sen-sitive cultivar Dongjin (DJ), moderately tolerant cultivar Hwayeong (HY) and tolerant cultivar Ilmee (IM) were exposed to ozone at the concentrations of 100 nl $\textrm{l}^{-1}$ or 200 nl $\textrm{l}^{-1}$ , 8 h per day for 10 days in a controlled-environment fumigation chamber. The rice cultivars seemed to be endurable to ozone stress at the concentration of 100 nl $\textrm{l}^{-1}$ which is frequently monitored during the growing season in summer. However, severe damage was induced and differential sensitivity was clearly noted among the rice cultivars at the higher ozone concentration. Activation of the glutathion (GR) -ascorbate peroxidase (APX) cycle was likely to be responsible for protection of rice plants against ozone exposure, relating difference in sensitivity of rice cultivars to ozone. Photosynthetic activity appeared to be one of sensitive responses, for which chlorophyll fluorescence and leaf greenness can together provide a very reliable index, a degree of photosynthetic damages by ozone. Formation of malondialdehyde (MDA) was also considered as an indication that can differentiate cultivars sensitivity to ozone. However, the changes in polyamines and total phenolics were not consistent with exposed ozone concentrations and/or ozone sensitivity of the cultivars. The behavior of polyamines and phenolics in the damaged plants at high ozone levels could be interpreted as an indication of ozone injury rather than activation of additional protection mechanisms scavenging active oxygen species formed by ozone. Several responses triggered by ozone could explain the differential sensitivity of the rice cultivars and be used as reliable indications of relative ozone damage to rice plant.

  • PDF

Cross-Tolerance and Responses of Antioxidative Enzymes of Rice to Various Environmental Stresse

  • Kuk, Yong-In;Shin, Ji-San
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.264-273
    • /
    • 2007
  • In order to examine the cross-tolerance of two chilling-tolerant cultivars (Donganbyeo and Heukhyangbyeo) and two chilling-susceptible cultivars (Hyangmibyeo and Taekbaekbyeo) to salt, paraquat, and drought, changes of physiological response and antioxidant enzymes were investigated. The seedlings were grown in a growth chamber until the 4-leaf stage. The seedlings were exposed to chilling at $5^{\circ}C$ for 3 days. For drought treatment, the seedlings were subjected to drought by withholding water from plants for 5 days. For paraquat study, plants were sprayed with $300{\mu}M$ paraquat. For the salt stress, the seedlings were transferred to the Hoagland's nutrient solution containing 0.6% (w/v) NaCl for 4 days. Chilling-tolerant cultivars showed cross-tolerant to other stresses, salt, paraquat, and drought in physiological parameters, such as leaf injury, chlorophyll a fluorescence, and lipid peroxidation. The baseline levels of antioxidative enzyme activities, catalase (CAT) and peroxidase (POX) activities in chilling-tolerant cultivars were higher than in the chilling-susceptible cultivars. However, there were no differences in ascorbate peroxidase (APX) and glutathione reductase (GR) activities between chilling-tolerant and -susceptible cultivars in untreated control. CAT activity in chilling-tolerant cultivars was higher than that in chilling-susceptible cultivars during chilling, salt, and drought treatments, but not during paraquat treatment. However, other antioxidative enzymes, APX, POX, and GR activities showed no significant differences between chilling-tolerant and -susceptible cultivars during chilling, salt, paraquat, and drought treatments. Thus, it was assumed that CAT contribute to cross-tolerance mechanism of chilling, salt, and drought in rice plants.

Studies on Selection of Adaptable Varieties in Paddy - Field of Ginseng Culture (인삼 논재배에 적응하는 품종 선발에 관한 연구)

  • Kang, Seung-Weon;Lee, Sung-Woo;Hyun, Dong-Yun;Yeon, Byeong-Yeol;Kim, Young-Chang;Kim, Young-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.6
    • /
    • pp.416-420
    • /
    • 2010
  • Root yield and quality of ginseng cultured in paddy soil was low relatively compared with that of upland soil because of moisture injury in root during rainy season. Drainage class in soils generally divided into 6 classes, and it is possible to cultivate ginseng practically in imperfectly drainage class (IDC). This study carried out to select the varieties that is suitable for paddy soil, which is easy to be generated rusty-colored root and physiological-discolored leaf. Experiment plot arranged with the condition of soil humidity contents such as poorly drainage class (PDC) and imperfectly drainage class (IDC), and upland soil. Growth characteristics and root yield were investigated in four-year-old ginseng of varieties, Cheonpoong (CP), Yeonpoong (YP), Hwangsookjong (HS), and Jakyeongjong (JK). CP among four varieties showed the highest yield in IDC and CP was the lowest ratio in leaf discoloration and rusty-colored root. HS was followed by CP in the order of root yield, but it had the weakness that the ratio of rusty-colored root was high respectively.

Protective Effects of Persimmon Leaf and Fruit Extracts against Acute Ethanol-Induced Hepatotoxicity

  • Ma, Jie;Liu, Xiao-Yu;Noh, Kyung-Hee;Kim, Myo-Jeong;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.4
    • /
    • pp.202-208
    • /
    • 2007
  • Persimmon is well-known as a Korean traditional medicine for alleviating coughs and enhancing blood circulation; it is also used for treatment of hypertension, cancer, diabetes and atherosclerosis. To evaluate the protective properties of persimmon leaf methanol extract (PLME) and persimmon fruit methanol extract (PFME) administration on acute ethanol-induced hepatotoxicity, C57BL/6 male mice were gavaged with or without persimmon extracts for 1 week. Hepatotoxicity was then induced by gavage of 5 g/kg BW ethanol. After 12 hr of ethanol administration, blood and liver were collected and analyzed for biochemical markers of hepatotoxicity. The results showed PLME and PFME treatments decreased the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) compared with ethanol control. Both PLME and PFME reduced serum lactate dehydrogenase (LDH) activity, but elevated alcohol dehydrogenase (ADH) activity. Serum triglyceride (TG) and hepatic cholesterol levels were significantly decreased when treated with PLME and PFME. Liver malondialdehyde (MDA) levels were significantly decreased in PLME and PFME groups compared with ethanol control. Furthermore, the administration of PLME and PFME significantly increased the activities of catalase, glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-red). In summary, PLME and PFME appeared to prevent hepatic injury by accelerating alcohol metabolism by increasing alcohol-metabolizing enzyme activities, by activating the antioxidative enzyme system against oxidative stress, and by decreasing fat accumulation, which is evidenced by decreased hepatotoxic indices in serum.

A Study on the Visible Injury of some Herbaceous Plants by $SO_2$ gas (수종(數種) 초본류(草本類)의 $SO_2$ 가스에 의한 가시피해특징(可視被害特徵)에 관(關)한 연구(硏究))

  • Kim, Jeong-Gyu;Lim, Soo-Kil;Kim, Jae-Bong
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.43-51
    • /
    • 1988
  • $SO_2$ gas injuries for 19 varieties of 10 species of plants were investigated within a environmentally controlled growth chamber. Visible injuries were observed when exposing the plants either 0, 0.2, 0.4, 0.7 or 1.5ppm of $SO_2$ gas for 5 days from 9 : 00 to 17 : 00 everyday. The results obtained were as follows: 1. Light brown spots were shown on Raphanus sativus(Chunchu, Taeback, Jinjudaepyung), Brassica campestris(Manchun, Josaengmiho, Seoul, Jeonseung), and Capsicum annum(Searona, Hongsanho, Hongilpum); brown spots on Sesamum indicum(Pungnyun, Kwangsan); reddish brown shades on Cleosia cristata; and black brown spots on Perilla frutescens, Calendula officinalis, Chrysanthemum morifolium, and Salvia splendens, respectively. 2. The spotty injuries induced by $SO_2$ gas injuries for 19 varieties of 10 species of plants were investigated within a environmentally controlled growth chamber. Visible injuries were observed when exposing the plants either 0, 0.2, 0.4, 0.7 or 1.5ppm of $SO_2$ gas for 5 days from 9 : 00 to 17 : 00 everyday. The results obtained were as follows: 1. Light brown spots were shown on Raphanus sativus(Chunchu, Taeback, Jinjudaepyung), Brassica campestris(Manchun, Josaengmiho, Seoul, Jeonseung), and Capsicum annum(Searona, Hongsanho, Hongilpum); brown spots on Sesamum indicum(Pungnyun, Kwangsan); reddish brown shades on Cleosia cristata; and black brown spots on Perilla frutescens, Calendula officinalis, Chrysanthemum morifolium, and Salvia splendens, respectively. 2. The spotty injuries induced by SO₂ gas on Raphanus sativus, Callistephus chinensis, Capsicum annum, Perilla frutescens, Calendula officinalis, Salvia splendens, and Sesamum indicum; the many small spots on Chrysanthemum morifolium; and the brown shade on Celosia cristata appeared on the upper surface of the intervein, on the leaf apex area and on the entire upper surface of leaves, respectively. 3. Visual injuries of Capsicum annum(Chunchu), Perilla frutescens, Sesamum indicum(Pungnyun, Kwangsan), and Salvia splendens were developed at 0.4ppm of SO₂ gas fumigation. Brassica campestris(Jeonseung), Capsicum annum(Searona, Hongilpum), and Cleosia cristata, however, showed the injury at 1.5ppm of $SO_2$ gas concentration. 4. Based on the tolerance grade(time when the 1st injury appeared), Raphanus sativus, Perilla frutescens, Sesamum indicum, and Salvia splendens were the most sensitive plants and Chrysanthemum morifolium, Callistephus chinensis, Cleosia cristata, and Calendula officinalis were the plants most tolerant of $SO_2$ gas. gas on Raphanus sativus, Callistephus chinensis, Capsicum annum, Perilla frutescens, Calendula officinalis, Salvia splendens, and Sesamum indicum; the many small spots on Chrysanthemum morifolium; and the brown shade on Celosia cristata appeared on the upper surface of the intervein, on the leaf apex area and on the entire upper surface of leaves, respectively. 3. Visual injuries of Capsicum annum(Chunchu), Perilla frutescens, Sesamum indicum(Pungnyun, Kwangsan), and Salvia splendens were developed at 0.4ppm of $SO_2$ gas injuries for 19 varieties of 10 species of plants were investigated within a environmentally controlled growth chamber. Visible injuries were observed when exposing the plants either 0, 0.2, 0.4, 0.7 or 1.5ppm of $SO_2$ gas for 5 days from 9 : 00 to 17 : 00 everyday. The results obtained were as follows: 1. Light brown spots were shown on Raphanus sativus(Chunchu, Taeback, Jinjudaepyung), Brassica campestris(Manchun, Josaengmiho, Seoul, Jeonseung), and Capsicum annum(Searona, Hongsanho, Hongilpum); brown spots on Sesamum indicum(Pungnyun, Kwangsan); reddish brown shades on Cleosia cristata; and black brown spots on Perilla frutescens, Calendula officinalis, Chrysanthemum morifolium, and Salvia splendens, respectively. 2. The spotty injuries induced by SO₂ gas on Raphanus sativus, Callistephus chinensis, Capsicum annum, Perilla frutescens, Calendula officinalis, Salvia splendens, and Sesamum indicum; the many small spots on Chrysanthemum morifolium; and the brown shade on Celosia cristata appeared on the upper surface of the intervein, on the leaf apex area and on the entire upper surface of leaves, respectively. 3. Visual injuries of Capsicum annum(Chunchu), Perilla frutescens, Sesamum indicum(Pungnyun, Kwangsan), and Salvia splendens were developed at 0.4ppm of SO₂ gas fumigation. Brassica campestris(Jeonseung), Capsicum annum(Searona, Hongilpum), and Cleosia cristata, however, showed the injury at 1.5ppm of $SO_2$ gas concentration. 4. Based on the tolerance grade(time when the 1st injury appeared), Raphanus sativus, Perilla frutescens, Sesamum indicum, and Salvia splendens were the most sensitive plants and Chrysanthemum morifolium, Callistephus chinensis, Cleosia cristata, and Calendula officinalis were the plants most tolerant of $SO_2$ gas. gas fumigation. Brassica campestris(Jeonseung), Capsicum annum(Searona, Hongilpum), and Cleosia cristata, however, showed the injury at 1.5ppm of $SO_2$ gas concentration. 4. Based on the tolerance grade(time when the 1st injury appeared), Raphanus sativus, Perilla frutescens, Sesamum indicum, and Salvia splendens were the most sensitive plants and Chrysanthemum morifolium, Callistephus chinensis, Cleosia cristata, and Calendula officinalis were the plants most tolerant of $SO_2$ gas.

  • PDF

Studies on Weed Control with Herbicides in Soybean Field (콩밭 잡초방제에 관한 연구)

  • Ryang Whan Seung
    • Korean journal of applied entomology
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 1971
  • Tolerance test in plastic vat, pot and fold tests were carried out to investigate the selective herbicides for soybean culture in sandy loam. The soybean plants showed great tolerance against herbicides such as Tri-allate (Avadex-BW), Alachlor (Lasso), Butachlor (Machete), Propachlor (Ramrod), Nitrofen (TOK), MO, HE-314, Nitrofen/Dinoseb(TOK/DNBP), and Chlo.oxu.on (Tenoran), and the growth was normal even when each was treated with the herbicides up to 2ft3 times of the recommended concentrations. Soybean plants showed a slight tolerance against Prometryne (Gesagard), Propazine (Gegamil), Diuron (Karmex), Metabromuron (Patoran), Linuron (Lorox) and Swep when each was treated with herbicides up to 1-2 times of the recommended concentrations. Great injury or withering was noticed due to the high sensitivity of soybean to Simazine (CAT) and to Floumetron (Cotoran). In pot and field experiments with herbicides such as Butachlor (Machete), Alachlor (Lasso), Nitrofen (TOK), Kerb, Nitrofen/Dinoseb (TOK/DNBP), Swep, Linuron (Lorox), Simazine (CAT) and PCP, the following results were obtained: Great injuries were noticed with Simazine (CAT). Also, Linuron (Lorox) and Kerb showed a slight injury at early growth stage of soybean, Nitrofen (TOK) , Nitrofen/Dinoseb (TOK/DNEP), Alachlo. (Lasso), Butachlo. (Machete) and Swep had high selectivities for soybean and no injury was noticed. With respect to herbicidal effects there was a greatly significant difference between treated plots and non-treated plots with the exception of Simaaine (CAT) plot in field test. E. crusgalli and C. sanguinalis were tolerant against Simazine(CAT) and Linuron(Lorox). Cyperus and E. annuus were tolerant against Kerb. Great herbicidal effects on grasses were observed in Alachlor (Lasso) and Butachlor (Machete) plots. Among broad-leaf weeds, P. hydropiper and C. album were tolerant against Butachlor (Machete) and Alachlor (Lasso). When soybean was treated with the herbicides such as Alachlor (Lasso) (ai. 150g/10a), Butachlor (Machete) (ai. 300g/10a), Nitrofen (TOK) (ai. 250g/10a), Linuron (Lorox) (ai. 75g/10a) once after seeding, no additional wording was required till harvest.

  • PDF

Controlled Release of Oxyfluorfen from the Variously Complexed Formulations - I. Model Study of Releasing Rate in Paddy Field (수종(數種) 결합제형(結合劑型으)로부터 Oxyfluorfen의 방출제어연구(放出制御硏究) - I. 논 조건(條件)에서의 방출속도(放出速度) 모형연구(模型硏究))

  • Guh, J.O.;Kuk, Y.I.;Chon, S.U.;Kim, D.K.
    • Korean Journal of Weed Science
    • /
    • v.10 no.3
    • /
    • pp.202-206
    • /
    • 1990
  • Field experiment was conducted to develop a model of controlled release of oxyfluorfen by using various split applications. Rice and some weed species was included in this study. The models of split applications were 10-10-0. 10-10-10. 20-20-0, 20-10-10. 20-20-20, 0-40-0, and 0-0-0g/Ha at 3days before transplanting, and 11 days after transplanting, respectively. Rice injury appeared dispeared at 20 g/Ha of oxyfluorfen on low leaf sheath but disappeared at few days. The injury was reduced by split application even at the same rate of application. However, no injury was siginificant at 30 days after transplanting. Barnyardgrass, Monochoria, and arrowhead were most susceptible to oxyfluorfen, but bulruch and most perennial weeds recovered after temporary growth inhibition. Therefore, to develop oxyflourfen for use in rice transplanting of adult rice seedling, split application with reduced rates, and development of expected to be tank-mixed or premixed with other perennial herbicides to obtain droad spectrum of weeds.

  • PDF

Foliage Contact Herbicidal Activity of Dehydrocostus lactone Derived from Saussurea lappa (목향(Saussurea lappa) 유래 Dehydrocostus lactone의 경엽 접촉 살초 활성)

  • Cho, Kwang-Min;An, Xue-Hua;Chon, Jae-Kwan;Kim, Hyo-Sun;Chun, Jae-Chul
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.421-428
    • /
    • 2010
  • A foliage contact herbicidal substance was separated from ethyl ether fraction in n-hexane extract of Saussurea lappa roots and identified as dehydrocostus lactone [(3aS,6aR,9aR,9bS)-3,6,9-trimethylidene-3a,4,5,6a,7,8,9a,9b-octahydroazuleno[5,4-d]furan-2-one](DHCL). When DHCL at 4,000 ppm was foliage-applied to two grasses and two broadleaf plants, greater than 85% necrotic injury was obtained from large crabgrass, maize and soybean, whereas only about 40% necrotic injury appeared in black nightshade, indicating that DHCL has no gross morphological selectivity, but shows difference in contact response among the plant species tested. Conductivity in incubation medium of the leaf disks treated with DHCL increased as the incubation time continued. Relatively low contact injury in black nightshade as compared with the other three plant species tested was attributed to decrease in absorption of DHCL due to relatively high amount of cuticle. DHCL did not require light in the herbicidal action and there were no inhibitory effects on seed germination and cell elongation. Acetyl-CoA carboxylase activity was inhibited by 30% and 58% at $100\;{\mu}M$ and $1000\;{\mu}M$ DHCL, respectively. These results suggested that the herbicidal action of DHCL was related with inhibition of fatty acid synthesis which in turn caused to weaken cell membrane integrity.

Effect of Virus-free Plant and Subsoiling Reversion Soil for Reduction of Injury by Continuous Cropping of Sweet Potato (고구마 연작장해 경감을 위한 바이러스 무병묘 재배와 심토반전 효과)

  • Song, Hae-Ahn;Kim, Kab-Cheol;Lee, Seung-Yeob
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.254-261
    • /
    • 2012
  • To reduce the injury by continuous cropping of sweet potato (Ipomoea batatas (L.) Lam.), the farmer's plant and virus-free plant were cultivated with the density of $70{\times}25cm$ (June 10, 2011) in continuous cropping soil (CCS) and subsoiling reversion soil (SRS). Fertilizer was applied at the rates of 55-63-156 $kg\;ha^{-1}$ ($N-P_2O_5-K_2O$) and 10 $ton\;ha^{-1}$ of cattle manure in CCS, and it was applied the 50% increased cattle manure compost and nitrogen in DRS. Symptoms of viral infection were revealed in the farmer's plant at 30 days after planting, but there were no symptoms in virus-free plant. The yield of virus-free plant was more increased 15% and 10.5% than that of farmer's plant in DRS and CCS, respectively. The yield of sweetpotato in SRS was more increased 8.8% and 3.2% in farmer's plant and virus-free plant compared to CCS, respectively. In DRS, the rate of marketable tuber of virus-free plant was increased by 80% compared to the farmer's plant (60.1%). The virus-free plant was produced the tuber with more brilliant peel color and well-formed shape compared to the farmer's plant. The increased yield of virus-free plant and in SRS soil condition showed a positive relationship (p=0.05) with the number of leaf per plant at 30 days and the number of branch per plant at 120 days after planting. The results showed that the early growth after planting was very important for the development of storage root. Therefore, the deep-subsoil reversion and cultivation of virus-free plant could be reduced the injury by continuous cropping of sweet potato, and increased farm income.

Eco-Friendly Control of Water Foxtail (Alopecurus aequalis) on Cultivation Fields of Forage Barley Sowed before Rice Harvest (벼 수확전 청보리 파종 재배시 친환경적 뚝새풀 관리)

  • Im, Il-Bin;Im, Bo-Hyeok;Park, Jea-Hyeon;Jang, Jun-Hyeong;Oh, Young-Jin;Jang, Un-Woo
    • Weed & Turfgrass Science
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 2014
  • This study was conducted to develop an eco-friendly control method for water foxtail in the field sowing barley seeds before rice harvesting. When sea water was applied pre-emergent, 1 and 2 leaves, little injury was observed on barley. Percent of water foxtail control with sea water (100%) was more than 50% at 1 leaf application timing. When sodium chloride was applied 400, 800 and $1,600kg\;ha^{-1}$, little injury was observed on barley. Percent of water foxtail control with sodium chloride was 36-44% at 30 days after sowing. When ferrous sulfate was applied at 400, 800 and $1,600kg\;ha^{-1}$, emergent injury was observed 35-50% on barley. Percent of water foxtail control with ferrous sulfate was 48-79% at 30 days after sowing. When barley was sowed at 200, 300 and $400kg\;ha^{-1}$, seeding rate standing plants have many of the more crops, water foxtail occurrence was low. And, Forage yield of 300 kg ha-1 seeding in the highest. Based on the results, it is possible to control water foxtail in the field sowing barley seeds before rice harvesting more than 50%.