• Title/Summary/Keyword: Leaf index

Search Result 740, Processing Time 0.029 seconds

Evaluation of Growth Diagnosis in Rice Field using Spectral Characteristics, LAI, and SPAD (분광반사특성과 엽면적지수 및 SPAD를 이용한 벼의 성장단계별 생육상태의 평가)

  • Park, Jong-Hwa;Shin, Hyoung-Sub;Park, Jin-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.805-809
    • /
    • 2008
  • Measurement of leaf area index (LAI) is useful for understanding rice growth, water use, and canopy light interception. The top nitrogen content(TNC) per unit area is an important quantitative index of the condition of nitrogen nutrition in rice production. The rapid and simple method of estimation of TNC, with the use of the existing nondestructive analyzing instruments chlorophyll meter SPAD-502 and plant canopy analyzer (PCA) LAI-2000, was scrutinized. Destructive measurement is time consuming and labor intensive. Our objective was to evaluate sampling procedures using the Li-Cor LI-1800, LAI 2000 plant canopy analyzer (PCA) for nondestructive estimation of rice LAI, and SPAD-502 on the Northern Plains of Cheongju. The LAI estimated by PCA tended to underestimate the LAI determined by actual measurement by about 20%. The estimation of LAI by PCA was judged to have a sufficient accuracy as a practical technique. A high positive correlation was obtained between the values of the SPAD reading and LAI. NDVI and LAI also showed a very high correlation. The values of the SPAD reading and LAI, and NDVI gave a high positive correlation. These results indicated that the method described in this study was effective as a simple and rapid method for the estimation of rice growth.

  • PDF

Comparing LAI Estimates of Corn and Soybean from Vegetation Indices of Multi-resolution Satellite Images

  • Kim, Sun-Hwa;Hong, Suk Young;Sudduth, Kenneth A.;Kim, Yihyun;Lee, Kyungdo
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.597-609
    • /
    • 2012
  • Leaf area index (LAI) is important in explaining the ability of the crop to intercept solar energy for biomass production and in understanding the impact of crop management practices. This paper describes a procedure for estimating LAI as a function of image-derived vegetation indices from temporal series of IKONOS, Landsat TM, and MODIS satellite images using empirical models and demonstrates its use with data collected at Missouri field sites. LAI data were obtained several times during the 2002 growing season at monitoring sites established in two central Missouri experimental fields, one planted to soybean (Glycine max L.) and the other planted to corn (Zea mays L.). Satellite images at varying spatial and spectral resolutions were acquired and the data were extracted to calculate normalized difference vegetation index (NDVI) after geometric and atmospheric correction. Linear, exponential, and expolinear models were developed to relate temporal NDVI to measured LAI data. Models using IKONOS NDVI estimated LAI of both soybean and corn better than those using Landsat TM or MODIS NDVI. Expolinear models provided more accurate results than linear or exponential models.

Estimating Leaf Area Index of Paddy Rice from RapidEye Imagery to Assess Evapotranspiration in Korean Paddy Fields

  • Na, Sang-Il;Hong, Suk Young;Kim, Yi-Hyun;Lee, Kyoung-Do;Jang, So-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.245-252
    • /
    • 2013
  • Leaf area index (LAI) is important in explaining the ability of crops to intercept solar energy for biomass production, amount of plant transpiration, and in understanding the impact of crop management practices on crop growth. This paper describes a procedure for estimating LAI as a function of image-derived vegetation indices from temporal series of RapidEye imagery obtained from 2010 to 2012 using empirical models in a rice plain in Seosan, Chungcheongnam-do. Rice plants were sampled every two weeks to investigate LAI, fresh and dry biomass from late May to early October. RapidEye images were taken from June to September every year and corrected geometrically and atmospherically to calculate normalized difference vegetation index (NDVI). Linear, exponential, and expolinear models were developed to relate temporal satellite NDVIs to measured LAI. The expolinear model provided more accurate results to predict LAI than linear or exponential models based on root mean square error. The LAI distribution was in strong agreement with the field measurements in terms of geographical variation and relative numerical values when RapidEye imagery was applied to expolinear model. The spatial trend of LAI corresponded with the variation in the vegetation growth condition.

SQMR-tree: An Efficient Hybrid Index Structure for Large Spatial Data (SQMR-tree: 대용량 공간 데이타를 위한 효율적인 하이브리드 인덱스 구조)

  • Shin, In-Su;Kim, Joung-Joon;Kang, Hong-Koo;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • In this paper, we propose a hybrid index structure, called the SQMR-tree(Spatial Quad MR-tree) that can process spatial data efficiently by combining advantages of the MR-tree and the SQR-tree. The MR-tree is an extended R-tree using a mapping tree to access directly to leaf nodes of the R-tree and the SQR-tree is a combination of the SQ-tree(Spatial Quad-tree) which is an extended Quad-tree to process spatial objects with non-zero area and the R-tree which actually stores spatial objects and are associated with each leaf node of the SQ-tree. The SQMR-tree consists of the SQR-tree as the base structure and the mapping trees associated with each R-tree of the SQR-tree. Therefore, because spatial objects are distributedly inserted into several R-trees and only R-trees intersected with the query area are accessed to process spatial queries like the SQR-tree, the query processing cost of the SQMR-tree can be reduced. Moreover, the search performance of the SQMR-tree is improved by using the mapping trees to access directly to leaf nodes of the R-tree without tree traversal like the MR-tree. Finally, we proved superiority of the SQMR-tree through experiments.

Estimation of Interception in Cheonmi Watershed, Jeju Island (제주 천미천 유역의 차단량 추정)

  • Chung, Il-Moon;Lee, Jeongwoo;Kim, Nam Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.815-820
    • /
    • 2015
  • For the establishment of effective water resources management platform for Jeju-Island, the characteristics, including surface runoff, evapotranspiration, groundwater recharge and discharge are to be properly quantified. Among these hydrologic components, interception due to vegetation is very important factor but it is hard to be quantified. After Von Hoyningen-Huene (1981) found the relationship between LAI (Leaf Area Index) and interception storage, LAI has been used for key factor to estimate interception and transpiration. In this study the equation suggested by Kozak et al. (2007) is implemented in SWAT-K (Soil and Water Assessment Tool - Korea) model and is tested at the Cheonmicheon watershed in Jeju-Island. The evaporation due to interception was estimated as 85~104mm, 8~11% of whole evaporation. Therefore it is necessary to consider the evaporation due to interception as a controlling factor to water budget of this watershed.

Effects of feeding leaf positions on the growth and fruit quality in muskmelon plants showing leaf yellowing symptoms

  • Lee, Hee-Ju;Lee, Sang-Gyu;Park, Sung-Tae;Kim, Sung-Kyeom;Choi, Chang-Sun;Chun, Chang-Hoo
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.293-297
    • /
    • 2015
  • This study was conducted to evaluate the influence of feeding leaf positions on the growth, net formation of fruits, and occurrence of leaf yellowing symptoms (LYS) in muskmelon plants. Plants having five or ten more leaves above the fruit-bearing node produced the greater biomass than those of plants having equal or five less leaves above the fruit-bearing node. The number of leaves above the fruit-bearing node also influenced on the occurrence of LYS. The number of plants with LYS decreased as the number of leaves borne on the nodes above the fruit-bearing node increased. The LYS infected ratio of BL-5 treatment were the greatest, while fruit weight of BL+5 treatment were the greatest among all the tested treatments. In addition, the net formation of BL-5 treatment showed the poorest. Results indicated that maintaining the higher number of leaves over the fruit-bearing node might be feasible the practical method for coping physiological damages from yellowing symptoms.

Anti-nociceptive and Anti-inflammatory Effect of an Ethanol Extract of The Leaf and Stem of Aralia cordata

  • Jang, Ji Yeon;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.301-305
    • /
    • 2014
  • The aim of our study is to investigate the anti-nociceptive and anti-inflammatory properties of an ethanol extract of the leaf and stem of Aralia cordata. Writhing responses induced by acetic acid, tail immersion test, and formalin-induced paw pain response for nociception and formalin-induced paw edema for inflammation were evaluated in mice. A. cordata (50 - 200 mg/kg, p.o.) and ibuprofen (100 mg/kg, p.o.), a positive non-steroidal anti-inflammatory drugs (NSAIDs), inhibited the acetic acid-induced writhing response, but they did not protect the thermal nociception in tail immersion test. However, morphine (5 mg/kg, s.c.) used as positive opioid control alleviated both the acetic acid-induced writhing response and thermal nociception in tail immersion test. In the formalin test, A. cordata (50 - 200mg/kg) and ibuprofen (200mg/kg) inhibited the second phase response (peripheral inflammatory response), but not the first phase response (central response), whereas morphine inhibited both phase pain responses. Both A. cordata (100 mg/kg) and ibuprofen (200 mg/kg) significantly alleviated the formalin-induced increase of paw thickness, the index of inflammation. These results show for the first time that the leaf and stem of A. cordata has a significant anti-nociceptive effect that seems to be peripheral, but not central. A. cordata also displays an anti-inflammatory activity in an acute inflammation model. The present study supports a possible use of the leaf and stem of A. cordata to treat pain and inflammation.

Effect of Different Light Intensities on the Growth and Leaf Gas Exchanges in Miscanthus sinensis and Pennisetum purpurascens (참억새 및 수크령의 광도차에 따른 생육변화 및 가스교환에 미치는 영향)

  • Kwack, Hye Ran;Lee, Jong Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.110-115
    • /
    • 2004
  • This experiment was conducted to investigate the effect of light intensities on the growth responses, carbohydrate contents and the characteristics of leaf gas exchange in Miscanthus sinensis and Pennisetum purpurascens. The plant height and leaf length were increased to about 30% in the sun. However, those were reduced severely in the shade, and leaf necrosis was also observed. The representative growth index and the dry weight of 2 species were 50% higher than shade and the rate was reduced according to the decrease of light intensities. Total carbohydrate contents showed very similar changes to that of dry weight. However, any notable influences were observed at above the light intensities of 250~500${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in the half shade. The size of spikes and the earliest spiking appeared in the sun and the spike color was decolorized as decreased in light intensities, irrespective of species. Photosynthetic rate of 2 species was 2 times higher in the sun than those in the shade, and it showed the typical photoresponses of sun plant. Stomatal conductances and intercelluar $CO_2$ concetration showed similar changes to that of photosynthetic rate. On the contrary, vapor pressure deficit was increased more in the shade than in the sun.

Canopy Architecture and Radiation Profiles in Natural Typha $\times$ glauca Stand (부들(Typha$\times$glauca) 자연군락의 엽층부 구조와 수광상태)

  • Kim, Joon-Ho
    • Journal of Plant Biology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 1985
  • To verify the cause of high productivity in Typha stand, leaf area index(LAI), leaf orientation and inclination, specific leaf area (SLA), and radiation interception profiles were determined in a natural Typha$\times$glauca stand. Throughout the growing season, the leaf inclination has been kept at near-right angle and leaf orientation has been random. These chracteristics were responsible for an uniform spatial arrangement of the leaves within the canopy and could be explained by the SLA value, which increased in their higher strata. The extinction coefficient (K) of the canopy, 0.12 to 0.20, was one of the smallest value out of terrestrial plant communities. At least more than 25% of full radiation penetrated into the lowest stratum of the canopy. High productivity of the Typha would be attributed to efficient penetration of the radiation in virtue of the stiff and straight leaves even though rather small LAI.

  • PDF

Variation of Leaf Characters in Cultivating and Wild Soybean [Glycine max (L.) Merr.] Germplasm (콩 재배종과 야생종 유전자원의 엽 형질 변이)

  • Jong, Seung-Keun;Kim, Hong-Sig
    • Korean Journal of Breeding Science
    • /
    • v.41 no.1
    • /
    • pp.16-24
    • /
    • 2009
  • Although leaf characters are important in soybean [Glycin max (L.) Merr.] breeding and development of cultural methods, very little information has been reported. The objectives of this study were to evaluate and analyze the relationships among leaf characters and suggest possible classification criteria for cultivating and wild (Glycin soja Sieb. & Zucc.) soybeans. Total of 94 cultivating and 91 wild soybean accessions from the Soybean Germplasm Laboratory of Chungbuk National University were used for this study. Central leaflet of the second leaf from the top of the plant was selected to measure leaf characters. Average leaf length, leaf width, leaf area, leaf shape index (LSI) of cultivating and wild soybeans were 12.3$\pm$1.25 cm and 6.6$\pm$1.35 cm, 6.8$\pm$1.241 cm and 2.9$\pm$0.92 cm, 55.6$\pm$15.75 $cm^2$ and 14.3$\pm$7.83 $cm^2$, and 1.9$\pm$0.38 and 2.4$\pm$0.53, respectively. Based on LSI, three categories of leaf shape, i.e., oval, ovate and lanceolate, were defined as LIS$\leq$2.0, LSI 2.1~3.0 and 3.1$\leq$LSI, respectively. Percentage of oval, ovate and lanceolate leaf types among cultivating and wild soybean accessions were 78.7%, 17.0% and 4.3 %, and 40%, 15.4% and 4.4%, respectively. Based on leaf length, three categories for cultivating, i.e. short leaf ($\leq$11.0 cm), intermediate (11.1~13.0 cm), and long (13.1 cm$\leq$), and four categories, i.e. short ($\leq$5.0 cm), intermediate (5.1~7.0 cm), long (7.0~9.0 cm), and very long (9.1 cm$\leq$) for wild soybeans were defined. Short, intermediate and long leaf types were about 1/3, 1/2 and 1/6, respectively, in cultivating soybeans, and 15.4%, 40.7% and 39.5%, plus 4.4% of very long leaf type in wild soybean. Cultivating and wild soybeans had leaf thickness, leaf area ratio (LAR), angle and petiol length of 0.25$\pm$0.054 mm and 0.14$\pm$0.032 mm, 40.1$\pm$8.22 and 53.7$\pm$12.02, $37.6{\pm}5.89^{\circ}$ and $54.6{\pm}10.77^{\circ}$, and 23.9$\pm$5.89 cm and 5.9$\pm$2.33 cm, respectively. There were highly significant positive correlations between leaf length and leaf width, and negative correlation between LSI and leaf width both in cultivating and wild soybeans. Although leaf area showed significant correlations with leaf length, leaf width and LIS in cultivating soybeans, wild soybeans showed no significant relationships among these characters. In general, soybeans with oval, ovate and lanceolate leaves were significantly different in leaf width and thickness. Cultivating soybean with oval leaf had greater leaf area, while wild soybeans with oval or ovate leaf had longer petiol than with lanceolate leaf.