• Title/Summary/Keyword: Leaf epidermis

Search Result 93, Processing Time 0.035 seconds

Leaf anatomy of Pinus thunbergii Parl. (Pinaceae) collected from different regions of Korea (곰솔의 잎 해부 형태)

  • Ghimire, Balkrishna;Kim, Muyeol;Lee, Jeong-Ho;Heo, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • Leaf anatomical study of Pinus thunbergii collected from 12 different coastal regions of Korea was conducted to understand the adaptive variation on leaf traits. Basic anatomical features are typical pine needle type with fibrous epidermis, 2-3 layered hypodermis, sunken stomata, monomorphic mesophyll, and well-represented bundle sheath. The bundle sheath surrounds a couple of vascular bundle separated by parenchyma bands. On the basis of their position, the resin ducts are of three types; external, medial and internal of the bundle sheath. The total number of resin ducts in all samples varies from 4 to 12. The stomata were found on stomatal bands throughout the leaf surface. Important dissimilarities observed on P. thunburgii leaf are the number and position of resin ducts and the number of stomata rows in leaf surface.

The Effect of Pyroligneous Acid on Leaf Tissue and Root Growth of Ginseng(Panax Ginseng C. A. Meyer) (목초액 처리가 인삼 잎 조직 및 지하부 생육에 미치는 영향)

  • Seong, Bong-Jae;Han, Seung-Ho;Kim, Sun-Ick;Kim, Hyun-Ho;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.97-100
    • /
    • 2014
  • To explore the possibility of using pyroligneous acid for environmentally friendly ginseng farming, this study observed samples of ginseng whose shoots were treated with pyroligneous acid sprays beginning in mid June, which is after foliation stage. The spongy tissue structure got thickened from triple layers to quadruple layers with the pyroligneous acid regardless of the concentration. The upper and lower epidermis cell of the leaves as well as the leaf mesopyll cells also became thicker. Compared to the no-treatment group, the overall growth and development of ginseng roots treated with pyroligneous acid were excellent. Accordingly, it is believed that pyroligneous acid can be an environmentally friendly alternative to conventional agro-chemicals applied to ginseng that can be used to facilitate the growth and development of ginseng.

Ecotypic Variation of Pulsatilla koreana Nakai Distributed in Korea (韓國에 分布하는 할미꽃 (Pulsatilla Koreana Nakai)의 生態型的 變異)

  • Lee, Ho-Joon;Say-Young Kim;Change-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.14 no.4
    • /
    • pp.379-398
    • /
    • 1991
  • In order to investigate the ecotypic variations of pulsatilla koreana nakai distributed in korea, 8 local populations of the plant were selected in accordance with latitude and compared on the differences of leaf shape, elongstion, stomatal distribution and dhlorophyll content. The incised angle of the plant is 38。32' in cheju, showing a great difference as compared with 23。77'-30。 32' of the other sites. as to the incised rate, mt. togyu and cheju representsed relatively high values of 49.04% and 48.21% the parted leaved individuals were only observed along the warm current coastal area including cheju, sokcho and sunchon and were 54(62.8%), 2(2.5%) and 3(3.3%) in the sites, respectively. Especially, the individuals consisting of only parted learves were 5(5.8%) in cheju alone and none of the other sites showed such individuals at all. So p. cernua distributed in cheju and p. koreana in inland area can be considered to beecotypic variations of the same species from the upper investigations. According to the elongations of leaf and rachis, the local populations could be classified into 3 types, such as warm current coastal area type(cheju,sunchon and sokcho),southern inland area type(andong, chungju and mt. togyu)and central inland ara type(mt. komdan and hongchon). The dentate numbera of 39.80-43.73 in the warm current area were also different from those of 87% in mt.togyu and 15% in hongchon, while opposite leaflets account for 100% in the other sites. The content of chlorophyll ranged from 0.609 mg/g. d.w.(cheju)to 0.924 mg/g.d.w.(hongchon), showing an increasing trends as the latitudes grow higher. The number of stomata on the low epidermis is much larger than that on the upper epidermis in the whole area. But both aspects showed an increasing tendency, too as the latitude becomes higher.

  • PDF

Effect of Temperature Treatments on the Penetration and Disease Development in the Leaf Epidermis by the Rice Blast Fungus, Pyricularia oryzae Cavara II. Difference in Percent Penetration, Hyphal Growth and Lesion Formation by Pre­ and Postdisposing Temperatures (기온변동이 벼 도열병균의 엽신에의 침입과 발병에 미치는 영향 II. 접종전 및 접종시의 온도처리에 의한 침입$\cdot$균사신전$\cdot$병반형성 차이)

  • Kim Chang Kyu;Mogi Shizuo
    • Korean Journal Plant Pathology
    • /
    • v.1 no.2
    • /
    • pp.122-127
    • /
    • 1985
  • Three rice cultivars, Aichi-asahi, Toyotama and Yamabiko, possessing a resistance gene $Pi-\alpha$ were evaluated for penetration, hyphal growth in the leaf epidermis and lesion formation using 6 isolates of Pyricularia oryzae by treating pre- and post disposing temperatures of $23/15^{\circ}C\;and\;29/21^{\circ}C$ (day/night) regimes, respectively. Percent penetration of the fungus was higher on the seedlings disposed at $29/21^{\circ}C$ regime and more lesions were formed at 7 days after inoculation than at $23/15^{\circ}C$ regime. Degree of hyphal growth and number of host cells with hyphal growth were remarkably increased from 72 to 96 hr after inoculation at $29/21^{\circ}C$ regime. However, lesion formation on the seedlings disposed at $23/15^{\circ}C$ regime was delayed, possibly as a result of the suppressed hyphal growth until 96 hr after inoculation.

  • PDF

Trichome morphology of Fallopia sect. Reynoutria (Polygonaceae) in Korea (한국산 닭의덩굴속 호장근절 (마디풀과) 식물의 털의 형태와 분류)

  • Moon, Hye-Kyoung;Park, Jin Hee;Park, Chong-Wook
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • The microstructure of the leaf epidermis and trichomes of Fallopia sect. Reynoutria are examined using scanning electron microscopy. Fallopia sachalinensis was distinguished from other taxa in this section by its prominent epicuticular wax layer consisting of protruding wax rodlets. In addition, epicuticular rodlets of F. sachalinensis individuals from Ullung Island and Dok Island appear to be thinner than those from other regions, including Japan and Sakhalin. The stomatal size appears to be related to the ploidy level in the sect. Reynoutria, as the hexaploids, octoploids and dodecaploids tend to have larger stomata as compared to tetraploids. Three basic types of trichomes were found in the section; (1) conical unicellular trichomes, (2) uniseriate filiform trichome consisting of 1-8 cells, and (3) peltate glandular trichomes. The trichome types and their distribution appear to be useful in distinguishing the taxa in the section.

Distribution and Relation of Mineral Nutrients in Various Parts of Korea Ginseng (Panax ginseng C. A. Meyer) (고려인삼의 부위간 무기성분 분포 및 상관관계)

  • Lee, Chong-Hwa;Shim, Sang-Chill;Park, Hoon;Han, Kang-Wan
    • Journal of Ginseng Research
    • /
    • v.4 no.1
    • /
    • pp.55-64
    • /
    • 1980
  • The distribution pattern of mineral nutrients, among various Parts of Korea ginseng (Panax ginseng C.A. Meyer) was investigated to understand ginseng nutrition by simple correlation analysis. Five·year old ginseng plants grown under four different nutritional environments were sampled and separated into leaf, petiole, stem, rhizome, cortex and epidermis of tap foot, central part of tap root, cortex and epidermis of lateral root, central part of lateral root, fine root in the middle of truly, for chemical analysis. Between mineral nutrients in root, N and P showed highly significant positive correlation each other and with Mg and Cu while all other elements (K, Ca, Mg, Fe, Mn, Zn, Cu, B) showed highly significant positive correlation each other. In shoot, number of mineral nutrient pairs haying significant relation was much less than in root. (Negative: P with Ca or B, K with N, Fe, Mn or Cu, Positive: N with Mg, Fe, Mn or Cu, K with Zn, Ca with Mg, Zn, or B, Fe Mn Cu each other, Mn with B.) The number of pairs having significant correlation in whole plant was approximately the same as the number in root but three of them showed significant negative correlation. The distribution pattern similarity of mineral contents among various parts was also discussed in relation to physiological significance in Korea ginseng plant.

  • PDF

Cytohistological study of the leaf structures of Panax ginseng Meyer and Panax quinquefolius L.

  • Lee, Ok Ran;Nguyen, Ngoc Quy;Lee, Kwang Ho;Kim, Young Chang;Seo, Jiho
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.463-468
    • /
    • 2017
  • Background: Both Panax ginseng Meyer and Panax quinquefolius are obligate shade-loving plants whose natural habitats are broadleaved forests of Eastern Asia and North America. Panax species are easily damaged by photoinhibition when they are exposed to high temperatures or insufficient shade. In this study, a cytohistological study of the leaf structures of two of the most well-known Panax species was performed to better understand the physiological processes that limit photosynthesis. Methods: Leaves of ginseng plants grown in soil and hydroponic culture were sectioned for analysis. Leaf structures of both Panax species were observed using a light microscope, scanning electron microscope, and transmission electron microscope. Results: The mesostructure of both P. ginseng and P. quinquefolius frequently had one layer of non-cylindrical palisade cells and three or four layers of spongy parenchymal cells. P. quinquefolius contained a similar number of stomata in the abaxial leaf surface but more tightly appressed enlarged grana stacks than P. ginseng contained. The adaxial surface of the epidermis in P. quinquefolius showed cuticle ridges with a pattern similar to that of P. ginseng. Conclusion: The anatomical leaf structure of both P. ginseng and P. quinquefolius shows that they are typical shade-loving sciophytes. Slight differences in chloroplast structure suggests that the two different species can be authenticated using transmission electron microscopy images, and light-resistant cultivar breeding can be performed via controlling photosynthesis efficiency.

Effect of Nitrogen on Cell Dynamics at Leaf Growth Zone in Two Rice Varieties

  • Sung, Jwa-Kyung;Lee, Chul-Won;Kim, Tae-Wan;Hwang, Seon-Woong;Song, Beom-Heon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.121-125
    • /
    • 2004
  • In plants, nitrogen is the major component for growth and development. Leaf growth is based on the division, elongation and maturation of cells, which are used for making of epidermis, mesophyll, bundle sheath, xylem, phloem and so on. Dynamics of these tissues with respect to nitrogen are required for better understanding. This experiment was conducted to evaluate effect of nitrogen on the elongation of epidermal and guard cell of two rice (Oryza sativa L.) varieties, Seoanbyeo and Dasanbyeo on May 2000 at Chungbuk national university in Cheongju. After transplaning the 20-day-old seedlings into a/5000 pots, the main characteristics related with cell elongation were investigated and evaluated. A maximum. leaf length reached at 7 or 8 days after emerging from the collar, and also the leaf elongation rates were greatly affected by the increase of N application rate. The initial and final cell length were about $17\mu\textrm{m}$ and $130\mu\textrm{m}$, respectively. Cell divisions occurred within 1.0mm from leaf base. With die higher nitrogen application rate of 22 kg-N $10\textrm{a}^{-1}$, cell division per hour was greater 1.5 to 1.9 and 1.2 to 1.3 fold as compared to the N application rate of 0 and 11 kg-N $10\textrm{a}^{-1}$, respectively. Cell enlargement of epidermal and guard cell under higher N application rate (22kg-N $10\textrm{a}^{-1}$) was finished within about 20 (Seoanbyeo) and 15 hours (Dasanbyeo), while it took much time, about 30 hours.

Effects of Simulated Acid Rain on the Shoot Growth and Internal Tissue of Arabidopsis thaliana (애기장대의 shoot 생장과 내부조직에 미치는 인공산성비의 영향)

  • Park Jong-Bum
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.889-894
    • /
    • 2005
  • This experiment was carried out to investigate the effects of simulated acid rain (SAR) in the shoot growth and internal structure of Arabidopsis thaliana. In the shoot growth, the plants treated with SAR (pH 3.0) for 15 days showed no morphological change compared to the control plants. Some change was observed in the internal structure of the stems: the epidermis and cortex tissues of the stems treated with SAR were partly damaged. The plants treated with SAR showed no noticeable difference compared to the control plants, but morphological changes were observed in the leaf. The leaves of the plants treated with SAR showed many white necrotic spots on the part of upper epidermis. A light microscopic examination of the leaves with necrotic spots showed that the upper epidermis was severely compressed with the damaged cuticle layer and the mesophyll cells were also damaged and compressed. However, noticeable structural change of vascular bundle cells was not observed.

Morphological Changes of Tissue in Cucumber Seedlings Grown in High Soil EC (높은 토양 EC에서 자란 오이묘 조직의 행태적 변화)

  • Chung, Hee-Don;Choi, Young-Jun
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.501-504
    • /
    • 2001
  • The effect of soil EC on tissue morphology of leaf and shoot tip in cucumber (Cucumis sativus L. cv. Euinchim-baekdadagi) seedlings was investigated. Number of trichomes on leaf upper epidermis increased with the increase in soil EC from 1.0 to $3.0dS{\cdot}m^{-1}$, but the shape and number of stomata on lower epidermis remained unchanged. Epidermal cells of cucumbers grown in EC $1.5dS{\cdot}m^{-1}$ soil was occupied mostly by large vacuole whereas those grown in EC $3.0dS{\cdot}m^{-1}$ soil were filled with a nucleus, mitochondria, chloroplast and other micro-organelles. Sponge parenchima cells were also larger and contained fewer chloroplasts at EC $1.5dS{\cdot}m^{-1}$ than those grown at EC $3.0dS{\cdot}m^{-1}$. Leaf thickness decreased at high EC and the color of epidermal cells became significantly darker on the photograph of optical microscope. Normal tissue differentiation was greatly suppressed in plants grown in soils with $3.5dS{\cdot}m^{-1}$ or higher EC.

  • PDF