• Title/Summary/Keyword: Leaf Cell

Search Result 761, Processing Time 0.026 seconds

High Frequency Plant Regeneration from Leaf Explant Cultures of Domestic Cultivated Strawberry (Fragaria x ananassa Duch) (국내 딸기 재배품종의 잎절편 배양으로부터 고빈도 식물체 재생)

  • Cho Mi-Ae;Choi Kyu-Myeong;Ko Suck-Min;Min Sung-Ran;Chung Hwa-Ji;Liu Jang-Ryol;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.175-179
    • /
    • 2005
  • To develop a high efficiency plant regeneration system from in vitro cultures of strawberry, cv. Yeobong, petiole and leaf explants were cultured on MS basal medium containing a combination of 0.5 mg/L IBA and 3.2 mg/L kinetin or zeatin or benzyl amino purine (BAP) for 6 weeks, and leaf explants with dark pretreatment for a week ($T_1$), 2 weeks ($T_2$), and 4 weeks ($T_3$) were cultured on medium supplemented with 0.5 mg/L IBA and 3.2 mg/L zeatin under 16 hr photoperiod for 6 weeks. Shoot organogenesis was observed from the greenish calli containing minimal anthocyanin formed at proximal cutting edges of the leaf explant (57%) when cultured adaxial side on the medium, whereas was directly formed from a cutting edges of petiole explant (6.3%). Frequency of callus formation and shoot organogenesis at large size of leaf explant ($1.0{\sim}1.5\;cm^2$) was higher than small size ($0.5{\sim}1.0\;cm^2$), and dark pretreatment significantly improved the frequency of leaf explants that produced calli and shoots. The maximum frequency (87%) for shoot organogenesis was obtained from the leaf explants that transferred to a 16 hr photoperiod condition after the initial 4 weeks dark period. The improved frequency (87%) in comparision with control without dark pretreatment (27%). When the shoots were transferred to 1/2 MS basal medium, formed roots with 20 d of culture. The rooted plants were subsequently transferred to the pots and to the field.

Study on the leaf morphology of Korean Aster L. and its allied taxa (한국산 개미취속 및 근연 분류군의 엽형태에 관한 연구)

  • 정규영;정형진
    • Korean Journal of Plant Resources
    • /
    • v.12 no.1
    • /
    • pp.50-61
    • /
    • 1999
  • The leaf morphological and anatomical characters about 17 taxa of Aster and its allied taxa were investigated to estimate taxonomic values. Leaf shapes of the treated taxa were divided into five types; elliptic, spathulate, lanceolate, linear, ovatodeltoid. These types were fixed in same taxa, but variable among different taxa, therefore useful as taxonomic character. Leaf margins were divided into four types; entire, serrate, dentate, incised, these types were invariable in most taxa, but variable among individual in same taxa such as Kalimeris incise, Aster spathulifolius. The size and shape of leaf epidermal cell, the size and distributional numbers per 10$\textrm{mm}^2$ of stomata, deposit feature of cuticle were not distinguished clearly from treated taxa, but presence of stomata on adaxial surface, size and distributional numbers per 10$\textrm{mm}^2$ of stomata were useful taxonomic characters in some taxa such as Gymnaster koraiensis, Aster altaicus var. uchiyamae, Aster tripolium, Heteropappus arenarius. The leaf trichomes were divided into five types by basic form, sculpturing on their outer surface and cell arrangement; uniseriate granulate conical type, uniseriate psilate conical type, uniseriate psilate filiform type, globular type, biseriate vesicular capitate type. In spite of various habitat, basic morphology of trichomes were not changed, therefore, it was thought to be good taxonomic character.

  • PDF

Evaluation of Root Characters Associated with Lodging Tolerance by Seedling Test in Rice

  • Si-Yong, Kang;Won-Ha, Yang;Hyun-Tak, Shin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.309-315
    • /
    • 1999
  • Rice seedling test was conducted to check the loging tolerance at ripening stage through evaluating the root characters. Thirteen Korean and foreign rice cultivars with direct seeding adaptable or high quality characteristics were grown in a cell pot and under submerged paddy. The root characters and pushing resistance of rice hill were determined at seedling and ripening stage, respectively. The diameter of crown root at the 7th and 8th leaf stages was thicker in lodging tolerance cultivars than those of others and showed significant-positive correlation with both pushing resistance and crown root diameter of mature plants. Also, the tensile strength of crown root at the 7th and 8th leaf stage showed highly positive correlation with the tensile strength of crown root of mature plants. The number of crown root at 7th leaf stage was significant-positively correlated with that of mature plant. The diameter of seminal root was not significantly correlated with the diameter of crown root throughout the whole growth stage. These results indicate that the diameter, tensile strength and number of crown root associated with root lodging tolerance can be detected with the seedling at about 7th or 8th leaf stage, and the seedling test using the cell pot is an useful and practical method to select lodging tolerant cultivars or lines of rice based on root characters, especially diameter of crown root.

  • PDF

Leaf epidermal structure of the Allium L. and its taxonomic significance (부추속(Allium L.) 잎 표피의 구조와 이의 분류학적 중요성)

  • Choi, Hyeok-Jae;Jang, Chang-Gee;Ko, Sung-Chul;Oh, Byoung-Un
    • Korean Journal of Plant Taxonomy
    • /
    • v.34 no.2
    • /
    • pp.97-118
    • /
    • 2004
  • A comparative anatomical and ultrastructural study was undertaken to investigare on the leaf epidermis by light microscopy (LM) and scanning electron microscopy (SEM). On the basis of results from this study, it was grasped major characters of taxa and variation range of each character on the level of species, section and subgenus respectively. The shape of leaf epidermal cell was oblong to linear, which was varied by each taxon. Epidermal cell of taxa in sects. Microscordum, Anguinum, and Rhizirideum, which had wide leaf blade, oblong instead of linear shape in others examined taxa in this study. The leaf of taxa in sect. Anguinum was hypostomatic, while the rest of taxa had amphistomatic leaf. This was also one of characters which could discriminate taxa of sect. Anguinum from others. The guard cell in investigated taxa had not so much variation in the respect of its size. The number of stomata per unit area reduced by increasing size of epidermal cell, the fewest number of stomata per unit area was found in the taxa of sect. Anguinum. The type of stomatal apparatus of observed all taxa was anomocytic. It was found to know ultrastructural variation in the epidermal cell, like as patterns of sculpture on the cell wall, and features of deposition of wax by SEM. There were no depositions of wax in the taxa of sect. Microscordum and Anguinum, but fine thread-like structures which were parallel or cross to axis was found on the surface of epidermal cell respectively. The patterns of sculpture on the cell were prominent straight in sects. Recticulato-bulbosa and Rhizirideum, discontinuous line in the sect. Oreiprason. The epicuticular wax had been deposited on the surface of its epidermal cell in all taxa except sects. Microscordum and Anguinum.

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Identification of the quantitative trait loci for breaking and bending types lodging resistance in rice, using recombinant inbred lines derived from Koshihikari and a strong culm variety, leaf star

  • Samadi, Ahmad Fahim;Yamamoto, Toshio;Ueda, Tadamasa;Adachi, Shunsuke;Hirasawa, Tadashi;Ookawa, Taiichiro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.93-93
    • /
    • 2017
  • To develop rice cultivars with increased biomass and grain yield, superior lodging resistance is an essential trait. The new breeding approach can be adopted for the improvement of stem lodging resistance by enhancing culm strength. The resistance to breaking type lodging is attributed to bending moment of basal culm (M), which is composed of the section modulus (SM) and bending stress (BS). The resistance to the bending type lodging is attributed to flexural rigidity (FR) of stem, which is composed of the secondary moment of inertia (SMI) and Young's modulus (YM). Starch and cell wall components such as cellulose, hemicellulose and lignin also play a significant role in physical strength of culm, and thus affect lodging. Leaf Star has a superior lodging resistance due to its thick and stiff culm because of its high M and FR compared with Koshihikari. Furthermore, Leaf Star contains high densities of hemicellulose, cellulose and low lignin density in culm compared with Koshihikari. In this study, we performed QTL analysis for these traits associated with culm strength, using 94 recombinant inbred lines (RILs, $F_8$), derived from a cross between Leaf Star and Koshihikari. The SM in the RILs showed a continuous distribution. QTLs for SM were detected on chrs.2, 3 and 10. Leaf Star alleles increased SM on chrs. 2 and 3, but Koshihikari allele increased on chr.10. These QTLs overlapped with those QTLs identified using backcrossed inbred line derived from a cross between Chugoku 117 and Koshihikari, the parents of Leaf Star. The FR in Leaf Star was higher than that in Koshihikari due to the larger SMI and YM. 3 QTLs for SMI were detected on chrs.2, 3 and 10. Leaf Star alleles increased SMI on chrs.2 and 3, and Koshihikari alleles increased on chr.10. One QTL on chr.3 and two QTLs on chr.5 for hollocelulose content were detected with Leaf Star alleles contribution. Moreover, two QTLs were detected for hemicellulose density on chrs.3 and 5. Leaf Star allele increased hemicellulose density on chr.5, and Koshihikari allele increased on chr.3. Furthermore, two QTLs for cellulose density were detected on chr.5, and one QTL on chr.2. For starch content, one QTL on chr.3 and two QTLs on chr.5 with Leaf Star alleles contribution were detected. TULK-6 carrying a chromosome segment of Leaf Star on chr.5 in the Koshihikari genetic background showed higher densities of starch and hemicellulose than those in Koshihikari. These results suggest that the detected QTLs for culm strength could be utilized for the improvement of lodging resistance in rice by marker-assisted selection.

  • PDF

Instrumentation and Software for Analysis of Arabidopsis Circadian Leaf Movement

  • Kim, Jeong-Sik;Nam, Hong-Gil
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.5.1-5.4
    • /
    • 2009
  • This article is an addendum to the authors’ previous article (Kim, J. et al. (2008) Plant Cell 20, 307-319). The instrumentation and software described in this article were used to analyze the circadian leaf movement in the previous article. Here, we provide detailed and practical information on the instrumentation and the software. The source code of the LMA program is freely available from the authors. The circadian clock regulates a wide range of cyclic physiological responses with a 24 hour period in most organisms. Rhythmic leaf movement in plants is a typical robust manifestation of rhythms controlled by the circadian clock and has been used to monitor endogenous circadian clock activity. Here, we introduce a relatively easy, inexpensive, and simple approach for measuring leaf movement circadian rhythms using a USB-based web camera, public domain software and a Leaf Movement Assay (LMA) program. The LMA program is a semi-automated tool that enables the user to measure leaf lengths of individual Arabidopsis seedlings from a set of time-series images and generates a wave-form output for leaf rhythm. This is a useful and convenient tool for monitoring the status of a plant's circadian clock without an expensive commercial instrumentation and software.

Role of Mesophyll Morphology in Determination of Leaf Photosynthesis in Field Grown Soybeans (포장생육대두의 엽광합성과정에서 엽육세포 형태의 역할)

  • Yun, Jin Il;Lauer, Michael J.;Taylo, S.Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.6
    • /
    • pp.560-567
    • /
    • 1991
  • Photosynthetic variation in field grown soybean [Glycine max (L.) Merr. cv Hodgson78] was studied in relation to leaf anatomical variation. Variations in mesophyll morphology were accentuated by manipulating source and sink size. At R3 stage, two treatments were started: one was thinning and continu-ous debranching(6. 5 plants rather than 26 plants per m of row and remaining plants were debranched weekly), and the other was continuous partial depodding (allowing only one pod to develop at each mainstem node). Gas exchange characteristics, mesophyll cell volume and surface area per unit leaf surface, and microclimatic parameters were measured on the intact terminal leaflet at the 10th node. Observations were made 5 times with 3 to 4 day intervals starting R4 stage. Two models were used to compute leaf photosynthetic rates: one considered no effect of mesophyll morphology on photosynthesis, and the other considered potential effects of variations in mesophyll cell volume and surface area on diffusion and biochemical processes. Seventy nine percent of total photosynthetic variations observed in the experiment was explained by the latter, while 69% of the same variations was explained by the former model. By incorporating the mesophyll morphology concept, the predictability was improved by 14.6% in the field condition. Additional Index Words: photosynthesis model, leaf anatomy, Glycine max (L.) Merr., mesophyll surface area, mesophyll cell volume.

  • PDF

Ontogeny of Stomata and Aerenchyma Tissue in Trapa natans L. var. bispinosa Makino (마름(Trapa natans L. var. bispinosa Makino)의 기공 및 통기조직의 형태발생)

  • 성민웅
    • Journal of Plant Biology
    • /
    • v.26 no.1
    • /
    • pp.41-51
    • /
    • 1983
  • This study was carried out to investigate ontogeny of stomata and aerenchyma tissue in Trapa natans L. var. bispinosa Makino, an aquatic plant. Ontogeny of stomata in this plant was an aperigenous type surrounding with 5 to 8 epidermal cells without subsidiary cells. Stomata were distributed abundantly on the upper surface of leaf, however, no stoma was found on the lower surface of leaf, and on the epidermis of reproductive organ, petiole and stem. Ontogency of aerenchyma tissue was progressed with five steps; 1) formation of angular cells by division of cortex cells, 2) development of small and large globular cells in accompany with schizogenous intercellular space, 3) enlargement of globular cells and more expansion of intercellular space, 4) cell induction of long elliptic and triarmed shape, 5) completion of the largest intercellular space from endodermis toepidermis. During the growth period two types of leaf were appeared at each node of stems; one type was a submerged and early-fallen leaf, the other was a floating leaf on water surface.

  • PDF

Changes in Endogenous Polyamine Levels during Polar Regeneration from Populus Leaf Segments (Populus 잎절편의 극성분화시 내생 Polyamine의 함량과 Polyamine 생합성 효소의 활성도 변화)

  • 김성호
    • Journal of Plant Biology
    • /
    • v.33 no.4
    • /
    • pp.243-251
    • /
    • 1990
  • Polyamine titers and the activities of arginine decarboxylase(ADC) and ornithine decarboxylase (ODC), enzymes which catalyze rate-limiting steps in polyamine biosynthesis, were investigated during polar regeneration of Populus leaf segments. The polar regeneration occurred at the basal cut end of Populus leaf segments through cell division around the vascular bundle. In the process of polar regeneration, the titers of putrescine and spermidine increased rapidly but the content of spermine remained constant. The leaf segments were then divided into three separte part ; the proximal, middle and distal. Spermidine titers showed an increase mainly in the proximal parts where polar regeneration occurred. On the other hand, putrescine titers showed an increase in the other two parts. In the course of polar regeneration, the activities of ADC and ODC increased, the ADC activities being higher than those of ODC. However, ODC activity was higher in the proximal part. Therefore, the spermidine contents and ODC activities are suggested to be related to polar regeneration in Populus leaf segments.

  • PDF