• Title/Summary/Keyword: Leading-Edge Shape

Search Result 80, Processing Time 0.025 seconds

Improvement of the Flow Around Airfoil/Flat-Plate Junctures by Optimization of the Leading-Edge Shape (날개-평판 접합부에서의 날개 앞전 형상 최적화를 통한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.257-265
    • /
    • 2009
  • The present study deals with the leading edge shape on a wing-body junction to decrease a horseshoe vortex, one of the main factors to generate the secondary flow losses. The shape of leading-edge is optimized with design variables form the leading-edge shape. Approximate optimization design method is used for the optimization. The study is investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. As the result, total pressure coefficient of the optimized design case was decreased about 9.79% compare to the baseline case.

  • PDF

Effect of the Blade Leading Edge on the Performance of a Centrifugal Compressor

  • Chu, Leizhe;Du, Jianyi;Zhao, Xiaolu;Xu, Jianzhong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.168-172
    • /
    • 2008
  • Three different geometry shapes of the blade leading edge in a centrifugal compressor were investigated in this paper. Numerical simulation was done to analyze the effect of the leading edge shape on the performance of the centrifugal compressor. The result shows that compared to the blunt leading edge, the circular leading edge will raise the chocking mass flow. The pressure ratio and efficiency will increase obviously. Using elliptical leading edge will get a further improvement on the performance than circular leading edge. The analysis of the flow field shows that the leading edge often causes flow separation near the inlet; using circular leading edge and elliptical leading edge will reduce the separation. What's more, using circular and elliptical leading edge will also reduce the wake loss near the outlet of the impeller. In a centrifugal compressor, using circular or elliptical leading edge on the splitter will improve the pressure loading distribution of main blade near the position of the splitter leading, which will increase the pressure ratio.

  • PDF

Numerical Study on The Effects of Blade Leading Edge Shape to the Performance of Supersonic Rotors (초음속 회전익의 앞전 형상이 공력 성능에 미치는 효과에 대한 수치적 연구)

  • Park, Kicheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.149-155
    • /
    • 2001
  • Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.

  • PDF

Improvement of the Flow Characteristics by Optimizing the Leading-Edge Shape Around Airfoil/Flat-Plate Junction (날개-평판 접합부에서의 날개 앞전 형상 최적화를 통한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.24-33
    • /
    • 2009
  • The present study deals with the optimization of the leading edge shape around a wing-body junction to minimize the strength of the horseshoe vortex, which is one of the main factor generating the secondary flow losses. For this purpose, approximate optimization method is used for the optimization. The study is performed by using $FLUENT^{TM}$ and $iSIGHT^{TM}$. The total pressure coefficient for the optimized model was decreased about 9.79% compared with the baseline model.

Influence of the Leading Edge Shape of a 2-Dimensional hydrofoil on Cavitation Characteristics (2차원 날개단면의 앞날 형상 변화에 따른 캐비테이션 특성 연구)

  • I.H. Song;J.W. Ahn;I.S. Moon;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.60-66
    • /
    • 2000
  • In order to improve cavitation characteristics for a high-speed propeller, leading edge shape of a 2-D hydrofoil is investigated numerically and experimentally. For flowfield analysis around the leading edge, the incompressible Reynolds Averaged Navier-Stokes(RANS) equation is solved using the standard $k-\varepsilon$ turbulence model and a finite volume method(FVM). The cavitation thickness, which is occurred on hydrofoil surface, is predicted using the panel code. It is shown that the calculation codes predict the experimental trend fairly well. From these results, new hydrofoils are designed

  • PDF

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Improvement of the flow around airfoil/flat-plate junctures by optimization of the leading-edge fence (날개-평판 접합부에서의 날개 앞전 판 최적화를 통한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.829-836
    • /
    • 2009
  • 3-Dimensional flow which is represented by horseshoe vortex is generated as a type of secondary flow about the main flow. As well, it causes the flow loss. The present study deals with the leading edge fence shape on a wing-body junction to decrease a horseshoe vortex, one of the main factors to generate the secondary flow losses. The shape of leading-edge fence was optimized with the design variables of the installed height, length, width, and thickness of the fence as the design variables. Approximate optimization design method is used as the optimization. The study was investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. Total pressure coefficient of the optimized design case was decreased about 7.5 % compare to the baseline case.

제공전투기의 초음속 순항 성능 향상을 위한 가변 앞전형상 에어포일의 개념설계 제안

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.647-652
    • /
    • 2016
  • To reduce drag force at supersonic speeds, sharp leading edge is hugely efficient. It is, however, incompatible with leading edge shape to have fine aerodynamic characteristics at subsonic and transonic speeds. It is critical to reduce drag force for enhanced cruise performance and higher efficiency. An air superiority fighter, however, required to have high maneuverability for survivability, and sharp leading edge is not proper. Consequently, variable leading edge is demanded to reduce drag force significantly at supersonic speeds for cruise performance. Leading edge altering system is constructed with rigid material to improve possibility of realization, and minimized movement of its components in altering for reduce effects on flight. It is compared with bi-convex airfoil and NACA 65-006 airfoil, which have comparable maximum thickness. At Mach number 1.7 and zero angle of attack, supersonic mode of designed airfoil indicates approximately 17% higher drag coefficient than the bi-convex airfoil indicates, it is, however, 23% lower than the NACA 65-006 indicates. Also, subsonic mode of the designed airfoil shows fine aerodynamic characteristics in comparison with NACA 65-006 airfoil in subsonic and transonic speed range. In this regard, design of the airfoil achieved the object of this study satisfactorily.

  • PDF

A Numerical Analysis of the Partial Admission Supersonic Turbine Losses for Geometic Conditions (형상 변수에 따른 부분 흡입형 초음속 터빈 손실에 관한 수치적 연구)

  • Shin Bong-Gun;Im Kang-Soo;Kim Kui-Soon;Jeong Eun-Hwan;Park Pyun-Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.297-305
    • /
    • 2006
  • In this paper, numerical analyses of the flow within turbine for geometric conditions such as nozzle shape, length of axial clearance, and chamfer angle of leading edge of blade have been performed to investigate the partial admission supersonic turbine losses. Firstly, flow's bending occurred at axial clearance is depended on nozzle shape. Next, the chamfer angle of leading edge affects the strength of shock generated at the leading edge. Finally the expansion and mixsing of the flow within axial clearance are largely depended upon the length of axial clearance. Therefore it is found that aerodynamic losses of turbine is affected by nozzle shape and chamfer angel and that partial admission losses is depended on nozzle shape and the length of axial clearance.

  • PDF

SEPARATION CONTROL MECHANISM USING SYNTHETIC JET ON AIRFOIL (익형에서의 synthetic jet을 이용한 박리제어 mechanism)

  • Kim, S.H.;Kim, W.;Hong, W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.60-66
    • /
    • 2007
  • Separation control has been performed using synthetic jets on airfoil at high angle of attack. Computed results demonstrated that stall characteristics and control surface performance could be substantially improved by resizing separation vortices. It was observed that the actual flow control mechanism and flow structure is fundamentally different depending on the range of synthetic jet frequency. For low frequency range, small vortices due to synthetic jet penetrated to the large leading edge separation vortex, and as a result, the size of the leading edge vortex was remarkably reduced. For high frequency range, however, small vortex did not grow up enough to penetrate into the leading edge separation vortex. Instead, synthetic jet firmly attached the local flow and influenced the circulation of the virtual airfoil shape which is the combined shape of the main airfoil with the separation vortex. Theses results show the characteristic of unsteady flow of single synthetic jet. Beside, we researched on multi-array synthetic jet to obtain applicable synthetic jet velocity. Multi-location synthetic jet is proposed to eliminate small vortex on suction surface of airfoil. With the results, we concluded that the flow around airfoil is stable by high frequency synthetic jet with elimination of small vortex and confirmation of stable flow. Moreover, performance of multi-array/multi-location synthetic jet can be improved by changing phase angle of multi-location synthetic jet.

  • PDF