• Title/Summary/Keyword: Lead-free radiation protection

Search Result 11, Processing Time 0.031 seconds

Monte Carlo Simulation for Radiation Protection Sheets of Pb-Free (무연 방사선 차폐 시트에 대한 몬테카를로 전산모사)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 2017
  • Radiation protection equipment has widely used to protect human body from radiations, for example X-ray and gamma ray. The material of the radiation protection equipment is mainly lead (Pb) which has brought out lead poisoning and pollution when the equipment is fallen into disuse. This problem makes research and development find new Pb-free materials for use of radiation protection. Manufacturing and evaluation processes for developing those material were carried out repletely until obtaining the performance of protection rate. In this study, combination possibility of shielding material was studied using Geant4 monte carlo simulation. X-ray tube under the same condition in the real measurement of the protection rate was simulated, and X-ray tube spectrum was obtained. The X-ray tube spectrum was applied to study on the protection rate and lead equivalent. The porosity effect was simulated, and was one of key factors to determine protection rate or lead equivalent in radiation protection sheet of Pb-free.

Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region

  • Sayyed, M.I.;Akman, F.;Kacal, M.R.;Kumar, A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.860-866
    • /
    • 2019
  • The lead element or its salts are good radiation shielding materials. However, their toxic effects are high. Due to less toxicity of bismuth salts, the radiation shielding properties of the bismuth salts have been investigated and compared to that of lead salts to establish them as a better alternative to radiation shielding material to the lead element or its salts. The transmission geometry was utilized to measure the mass attenuation coefficient (${\mu}/{\rho}$) of different salts containing lead and bismuth using a high-resolution HPGe detector and different energies (between 81 and 1333 keV) emitted from point sources of $^{133}Ba$, $^{57}Co$, $^{22}Na$, $^{54}Mn$, $^{137}Cs$, and $^{60}Co$. The experimental ${\mu}/{\rho}$ results are compared with the theoretical values obtained through WinXCOM program. The theoretical calculations are in good agreement with their experimental ones. The radiation protection efficiencies, mean free paths, effective atomic numbers and electron densities for the present compounds were determined. The bismuth fluoride ($BiF_3$) is found to have maximum radiation protection efficiency among the selected salts. The results showed that present salts are more effective for reducing the intensity of gamma photons at low energy region.

A study of the radioprotection effect of guarana (Paullinia cupana) on the fetuses of ICR mice THE RADIATION PROTECTION EFFECTS OF GUARANA

  • Gu, Yeun-Hwa;Hasegawa, Takeo;Suzuki, Ikukatsu;Yamamoto, Youichi;Yoon, Yeog-Byung;Rhee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.347-356
    • /
    • 2001
  • Guarana, a tropical plant is found in powdered for in health food and is very popular soft drink in Brazil as an energy feaster with its high caffeine contents. We examined its radioprotection effects during organogenesis stages of ICR mice by malformations rate and cellular lead 8 the embryo by radiation and analyzed the mechanism of the radioprotection effects in the fetal of ICR mice. The results of this study showed that Guarana reduced clearly the embryonic death rate and teratogenesis rate by radiation. Its radioprotection effect inject be related with its radioprotection effect might be related with its antioxidant effect or free radical scavenger. We need to exposure the Guarana as a potential radioprotection agent. Therefore, we investigated about radiation effects by Guarana using to mice experiments in this paper.

  • PDF

Development of Lead Free Shielding Material for Diagnostic Radiation Beams (의료영상용 방사선방호를 위한 무납차폐체 개발)

  • Choi, Tae-Jin;Oh, Young-Kee;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.232-237
    • /
    • 2010
  • The shielding materials designed for replacement of lead equivalent materials for lighter apron than that of lead in diagnostic photon beams. The absorption characteristics of elements were applied to investigate the lead free material for design the shielding materials through the 50 kVp to 110 kVp x-ray energy in interval of 20 kVp respectively. The idea focused to the effect of K-edge absorption of variable elements excluding the lead material for weight reduction. The designed shielding materials composited of Tin 34.1%, Antimon 33.8% and Iodine 26.8% and Polyisoprene 5.3% gram weight account for 84 percent of weight of lead equivalent of 0.5 mm thickness. The size of lead-free shielder was $200{\times}200{\times}1.5\;mm^3$ and $3.2\;g/cm^3$ of density which is equivalent to 0.42 mm of Pb. The lead equivalent of 0.5 mm thickness generally used for shielding apron of diagnostic X rays which is transmitted 0.1% for 50 kVp, 0.9% for 70 kVp and 3.2% for 90 kVp and 4.8% for 110 kVp in experimental measurements. The experiment of transmittance for lead-free shielder has showed 0.3% for 50 kVp, 0.6% for 70 kVp, 2.0% for 90 kVp and 4.2% for 110 kVp within ${\pm}0.1%$. respectively. Using the attenuation coefficient of experiments for 0.5 mm Pb equivalent of lead-free materials showed 0.1%. 0.3%, 1.0% and 2.4%, respectively. Furthermore, the transmittance of lead-free shielder for scatter rays has showed the 2.4% in operation energy of 50 kVp and 5.9% in energy of 110 kVp against 2.4% and 5.1% for standard lead thickness within ${\pm}0.2%$ discrepancy, respectively. In this experiment shows the designed lead-free shielder is very effective for reduction the apron weight in diagnostic radiation fields.

Enhanced photon shielding efficiency of a flexible and lightweight rare earth/polymer composite: A Monte Carlo simulation study

  • Wang, Ying;Wang, Guangke;Hu, Tao;Wen, Shipeng;Hu, Shui;Liu, Li
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1565-1570
    • /
    • 2020
  • Photons with the energy of 60 keV are regularly used for some kinds of bone density examination devices, like the single photon absorptiometry (SPA). This article reports a flexible and lightweight rare earth/polymer composite for enhancing shielding efficiency against photon radiation with the energy of 60 keV. Lead oxide (PbO) and several rare earth element oxides (La2O3, Ce2O3, Nd2O3) were dispersed into natural rubber (NR) and the photon radiation shielding performance of the composites were assessed using monte carlo simulation method. For 60 keV photons, the shielding efficiency of rare earthbased composites were found to be much higher than that of the traditional lead-based composite, which has bad absorbing ability for photons with energies between 40 keV and 88 keV. In comparison with the lead oxide based composite, Nd2O3-NR composite with the same protection standard (the lead equivalent is 0.25 mmPb, 0.35 mmPb and 0.5 mmPb, respectively), can reduce the thickness by 35.29%, 37.5% and 38.24%, and reduce the weight by 38.91%, 40.99% and 41.69%, respectively. Thus, a flexible, lightweight and lead-free rare earth/NR composite could be designed, offering efficient photon radiation protection for the users of the single photon absorptiometry (SPA) with certain energy of 60 keV.

Personal Protective Equipment Availability and Utilization Among Interventionalists

  • Rose, Andre;Rae, William Ian Duncombe
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.166-171
    • /
    • 2019
  • Objective: This study explored personal protective equipment (PPE) availability and PPE utilization among interventionalists in the catheterization laboratory, which is a highly contextualized workplace. Methods: This is a cross-sectional study using mixed methods. Participants (108) completed a survey. A hyperlink was sent to the participants, or they were asked to complete a paper-based survey. Purposively selected participants (54) were selected for individual (30) or group (six) interviews. The interviews were conducted at conferences, or appointments were made to see the participants. Logistic regression analysis was performed. The qualitative data were analyzed thematically. Results: Lead glasses were consistently used 10.2% and never used 61.1% of the time. All forms of PPE were inconsistently used by 92.6% of participants. Women were 4.3 times more likely to report that PPE was not available. PPE compliance was related to fit and availability. Conclusions: PPE use was inconsistent and not always available. Improving the culture of radiation protection in catheterization laboratories is essential to improve PPE compliance with the aim of protecting patients and operators. This culture of radiation protection must include all those involved including the users of PPE and the administrators and managers who are responsible for supplying sufficient, appropriate, fitting PPE for all workers requiring such protection.

An investigation of the nuclear shielding effectiveness of some transparent glasses manufactured from natural quartz doped lead cations

  • Kassem, Said M.;Ahmed, G.S.M.;Rashad, A.M.;Salem, S.M.;Ebraheem, S.;Mostafa, A.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2025-2037
    • /
    • 2021
  • The influence of lead cations on natural quartz (QZ) from Egypt as a glass shielding material for the composition with nominal formula (10Na2O - (90 - x) QZ - xPbO (where x = 30, 35, 40, 45 and 50 mol %)) was examined. The studied samples are synthesized via the melt quenching method at 1050 ℃. The X-ray diffraction XRD patterns were confirmed the glass nature for studied samples. Moreover, the optical properties, and the transparency for all compositions were examined by UV-Vis spectroscopy. Also, the major elemental composition of the natural quartz were estimated via the X-ray fluorescence (XRF) technique. Further, the density and molar volume were determined. Furthermore, the nuclear shielding parameters such as, mass attenuation coefficient, effective atomic number, electronic density, the total atomic, and electronic cross sections as well as the mean free path, and the half value layer with different gamma ray energies (81 keV-1407 keV) were calculated. Besides, the results showed that the shielding behavior towards the gamma ray radiation for all glass samples was increased as the increment in PbO concentration in the glass system.

Performing angiographic intervention with a femoral entry shield: Element analysis microscopy and hand dose reduction for interventional radiologist

  • Law, Martin;Ng, Dickon H.L.;Yoon, Do-Kun;Djeng, Shih-Kien
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1318-1322
    • /
    • 2021
  • To unveil and delineate the elements applicable to the radiation protection of a femoral entry shield, calculate its mass attenuation coefficient, and demonstrate its dose reduction efficacy for interventional radiologist performing transarterial embolization (TAE) of ruptured hepatocellular carcinoma (rHCC). The lead equivalency of the shield was firstly validated. Electron microscopy was used to confirm the femoral entry shield being lead-free and to analyze the elemental content, with which the mass attenuation coefficient of the shield was calculated. An adult phantom, irradiated at the upper abdomen to simulate the TAE of rHCC, was used together with a dosimeter attached to the palm of a hand phantom. The dose rates at the hand phantom were measured, with the rHCC clinical protocol, without and with the femoral entry shield placed over the right femoral access site of the adult phantom. Without using the shield, the average hand dose rate was measured to be 0.325 µSv/sec. While using the shield, it was determined to be 0.110 µSv/sec. There was significant 66% dose reduction to the hand dose of IRs performing angiographic intervention with the femoral entry shield.

A Convenient Method on the Methyl-Ethyl-Ketone Extraction of $^{99m}TcO^-{_4}$ ($^{99m}TcO^-{_4}$의 메틸-에틸-케톤-간편 추출법)

  • Lee, Jong-Du;Lee, Byung-Hyn
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.103-111
    • /
    • 1984
  • A convenient method of $^{99m}Tc$-methyl-ethyl-ketone (MEK) extraction technique was developed and a mobile $^{99m}Tc$-extraction generator was designed. The MEK extraction and the phase separation of $^{99m}TcO^-{_4}$ were carried out with a simple procedure in the same container. The shielding of $^{99}Mo$ radioactivity was made with one lead container. The system was simplified by shielding $^{99m}TcO_4{^-}({\gamma}_e=0.14\;MeV)$ separately. $^{99m}TcO^-{_4}\;in\;^{99m}Tc-MEK$ extract was recovered by adsorption and elution only, and therefore, the possibility of volatilization was reduced. The volume of $^{99m}TcO^{-}{_4}$-saline product was reduced to 1 ml by using a small alumina column and the column operation time was shortened. The separation time of $^{99m}Tc$ was reduced to 30 minutes, and the operation was carried out at the outside of the shielding. The system was designed to operate under the condition of bacteria-free.

  • PDF